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Summary. Chain graphs are a natural generalization of directed acyclic graphs and undirected
graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional
independence hypotheses that they represent. There are many simple and apparently plausible, but
ultimately fallacious, interpretations of chain graphs that are often invoked, implicitly or explicitly.
These interpretations also lead to flawed methods for applying background knowledge to model
selection. We present a valid interpretation by showing how the distribution corresponding to a chain
graph may be generated from the equilibrium distributions of dynamic models with feed-back. These
dynamic interpretations lead to a simple theory of intervention, extending the theory developed
for directed acyclic graphs. Finally, we contrast chain graph models under this interpretation
with simultaneous equation models which have traditionally been used to model feed-back in
econometrics.
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1. Introduction

The use of directed acyclic graphs (DAGs) simultaneously to represent causal hypotheses
and to encode independence and conditional independence constraints associated with
those hypotheses may be traced back to the pioneering work of Wright (1921). More
recently, DAGs have proved fruitful in the construction of expert systems, in the
development of efficient updating algorithms (Pearl, 1988; Lauritzen and Spiegelhalter,
1988) and reasoning about causal relations (Spirtes et al., 1993; Pearl, 1993, 1995, 2000;
Lauritzen, 2001).

Graphical models based on undirected graphs, also called Markov random fields, have
been used in spatial statistics to analyse data from field trials, image processing and a host
of other applications (Hammersley and Clifford, 1971; Besag, 1974a; Speed, 1979; Darroch
et al., 1980).

Chain graphs, which admit both directed and undirected edges, but no partially directed
cycles, were introduced as a natural generalization of both undirected graphs and acyclic
directed graphs (Lauritzen and Wermuth, 1989). One of the original motivations for
introducing chain graphs was that the inclusion of undirected edges allowed the modelling
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322 S. L. Lauritzen and T. S. Richardson

of ‘simultaneous responses’ (Frydenberg, 1990), ‘symmetric associations’ (Lauritzen and
Wermuth, 1989) or simply ‘associative relations’, as distinct from causal relations (Andersson
et al., 1996), represented by directed edges.

Chain graph models are beginning to be used increasingly in applied contexts; see for
example Mohamed et al. (1998). A central theme of this paper is that the apparent simplicity
of chain graphs as an extension of DAGs and undirected graphs belies the subtlety of the
hypotheses that they represent. In particular, there are many simple and apparently plausible,
but ultimately fallacious and misleading, interpretations of chain graphs that are often
invoked implicitly or explicitly as a justification for their application. In Section 5 we describe
and discuss such interpretations.

We next present valid interpretations, by showing how the distribution corresponding to a
chain graph may be generated from equilibrium distributions of dynamic models with feed-
back over time. Here again we shall see that things are not quite as straightforward as they
may at first appear.

This dynamic interpretation leads to a simple theory of intervention, extending the
theory that has been developed for DAGs. Finally, we contrast chain graph models with
simultancous equation models which have traditionally been used to model feed-back in
econometrics.

2. Basic graphical concepts and notation

In this paper we consider graphs containing both directed (‘—’) and undirected (‘—’) edges
and largely use the terminology of Lauritzen (1996), where the reader can also find further
details. Below we briefly list some of the most central concepts used in this paper.

A partially directed cycle in a graph G is a sequence of n distinct vertices vy, ..., v, (n = 3),
and v,+; = vy, such that

(a) Vi(l <i<n)either v/—v;14 or v; < v;4;, and
(b) 37 (1 <j < n)such that v; < v;4;.

A subset C of vertices is complete if there is an edge (directed or undirected) between every
pair of vertices in C. A maximal complete subset is a cligue.

If u — v, the vertex u is a parent of v and, if u—v, u is a neighbour of v. The set of parents of
v is denoted pa(v) and the set of neighbours is denoted ne(v). The set bd(v) = pa(v) U ne(v) is
the boundary of v. For a subset 4 C V, we let

pa(4) = Uy pa(v)\4.

A chain graph is a graph in which there are no partially directed cycles. A chain graph in
which there are no undirected edges is a DAG.

The chain components T of a chain graph are the connected components of the undirected
graph obtained by removing all directed edges from the chain graph. In a DAG, all chain
components are singletons.

For 4 C V, G4 denotes the subgraph which has A4 as vertex set and all edges inherited
from G. Such a subgraph is said to be induced by A. A minimal complex in a chain graph is
an induced subgraph of the form

a— vy —- - "‘7Dr<_b.

Minimal complexes play a fundamental role for the chain graph Markov property, to be
further described below.
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3. Graphical models

A graphical model is formally a set of distributions, satisfying a set of conditional inde-
pendence relations encoded by a graph. This encoding is known as the Markov property
associated with the type of graph. This paper is concerned with the chain graph Markov
property defined in Lauritzen and Wermuth (1984, 1989) and Frydenberg (1990). There have
been several alternative suggestions for associating a Markov property with a chain graph
(Cox and Wermuth, 1993; Andersson et al., 1996, 2001), which generally are not equivalent
to the above and which are not discussed in detail in the present paper.

Below we give the factorization versions of the Markov properties for DAGs and for chain
graphs. For further details, the reader is again referred to Lauritzen (1996).

3.1. Basic factorizations

A distribution P satisfying the Markov property associated with a DAG is most easily
described through the factorization of its joint density f (with respect to a product measure)
in the form

fx) = I_Lf(xv |xpa(v))~ (1)

Here and in the following, x4 denotes a configuration (x,),c4 of a subset of variables 4 C V.
The chain graph Markov property manifests itself through an outer factorization

@) =TI fCeelrpa), 2)
€T
where each factor further factorizes according to the graph as
f(xz |xpa(r)) = Zﬁl(xpa(r)) H ¢A(xA)- (3)
A€ A7)

Here A(t) are the complete sets in the undirected graph (G:upa(r))”, obtained from the subgraph
Grupa(r) by ‘moralization’ (Lauritzen (1996), page 7), i.e. adding edges between unconnected
parents of t and ignoring directions on remaining edges. The factor Z is a normalizer

Z(xpa) =22 11 dalxa)-
X A€ A(7)
Note that the outer factorization (2) may be viewed as a DAG with vertices representing the
multivariate random variables X, for T € 7. Andersson et al. (1996) referred to this as the
‘DAG of boxes’ associated with a chain graph, but ‘DAG of chain components’ would be
more precise, as boxes typically are used to indicate a coarser partitioning of the variables
than specified with chain components (Wermuth and Lauritzen, 1990).

3.2. The global Markov property and Markov equivalence
The global Markov property associated with a DAG D or a chain graph K identifies the full set
of conditional independence relations that follow as consequences of the factorizations above.
For subsets of variables 4, B and S, the expression 4 1L B|S denotes that the variables in 4
are conditionally independent of those in B, given the values of the variables in S (Dawid,
1979). We use the notation 4 1 B|S to mean that the conditional independence of 4 and B
given S is not a consequence of the global Markov property, implying that the conditional
independence will fail for some (but not all) probability measures which factorize (Studeny
and Bouckaert, 1998).
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In general, different graphs can imply the same conditional independence relations. More
precisely, if for given state spaces we let M(G) denote the set of distributions obeying the
conditional independence relations associated with a graph G, two graphs G; and G, are said
to be Markov equivalent if M(G,) = M(G,) for all such state spaces. Frydenberg (1990) gave
the following necessary and sufficient condition for Markov equivalence of two chain graphs,
proved in full generality by Andersson et al. (1997).

Proposition 1. Two chain graphs KC; and K, are Markov equivalent if and only if they have
the same adjacencies and the same minimal complexes.

A similar result for DAGs was obtained by Verma and Pearl (1990).

4. Causal interpretation of directed acyclic graph models

This section gives a brief description of the now rather standard causal interpretations
associated with a DAG given by Spirtes et al. (1993) and Pearl (1993, 1995), largely following
Lauritzen (2001). The interpretations are both concerned with their data-generating processes
and associated calculation of effects of interventions on associated distributions.

4.1. Conditioning by observation or intervention

We initially emphasize the distinction between different types of conditioning operations,
each of which modifies a given probability distribution. Conditional densities are usually
calculated as

JOR) = fOX =x) = [, 0)/f ).

We refer to this type of conditioning as conditioning by observation or conventional con-
ditioning.

In general this is not the way that the distribution of Y should be modified if we intervene
externally and force the value of X to be equal to x. We refer to this other type of
modification as conditioning by intervention or conditioning by action. To make the distinction
clear we use different symbols for the two types of conditioning, as indicated below:

SOl = FOIX < x).

Other researchers have used expressions such as P(Y, = y), Pmanx)(»), set(X = x), X =% or
do(X = x) to denote intervention conditioning (Neyman, 1923; Rubin, 1974; Spirtes et al.,
1993; Pearl, 1993, 1995, 2000).

Generally, the two quantities will be different,

FOllx) # f ).

and the quantity on the left-hand side cannot be calculated from the density alone, without
additional assumptions. The difference has often mistakenly been ignored in statistical
literature although there are examples, where the distinction is very clearly made; see for
example Box (1966) or Cox (1984).

Below we shall give a precise causal interpretation of a DAG. This will imply that in the
first graph below

o——e oc—e

X Y X Y

we shall have that f(y||x) = f(y|x) and f(x||y) = f(x), whereas these relations are reversed in
the second graph, i.e. there it holds that f{(y||x) = f{y) and f(x||y) = f(x[y).
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4.2. Data-generating process for directed acyclic graph models
A data-generating process for a DAG model is a system of assignments

Xy — gv(Xpa(v), Uv)a vel, (4)

where the assignments must be carried out sequentially in a well ordering of the DAG D, or
partly in parallel, so that at all times, when X, is about to be assigned a value, all variables in
pa(v) have already been assigned a value. The variables U,, v € V, are assumed to be
independent. For any given probability distribution, there is a multitude of choices for g,
and U, in the generating process. Deriving results on the basis of this representation should
therefore be made with extreme caution, to avoid undue dependence on the specific choice
made (Dawid, 2000).

This assignment system can be seen as a general structural equation model (SEM) as
invented in the context of genetics (Wright, 1921), and exploited in economics (Haavelmo,
1943; Wold, 1954) and social sciences (Goldberger, 1972). SEMs were also used as the main
justification and motivation for studying directed Markov models in Kiiveri et al. (1984) and
Kiiveri and Speed (1982). We shall return to these models in Section 7.

It is appropriate to think of a data-generating process as a ‘computer program’, well
ordering the elements of V" as in expression (4) so that V' =1,..., p and writing

fori=1,...,p;
¢ « runif;
X; ¢ hi(xpag), &);

return x;

Here runif denotes a random variable which is uniformly distributed on the unit interval and
h; is chosen so that if ¢ has this distribution then /4; (Xpa;), €) has the same distribution as
gi(xpa(lf)a UI)

It is an important aspect of SEMs that they also specify the way in which intervention is to
be modelled. As is implicit in much literature and, for example, quite explicit in Strotz and
Wold (1960), the effect of the intervention X, <— x;i on a variable with label @ is modelled by
replacing the corresponding line in expression (4) or the equivalent computer program with
the assignment described by the intervention. We refer to this type of intervention as
intervention by replacement.

4.3. Causal directed acyclic graphs
When we say that a DAG D is causal for a probability distribution P, we imply that it holds
for any A C V that

Fapullx) =TT fGolpaw) = S x)

B 5
ver\4 I;IA S Geo[xpaqw) ©)

For A = (J this says that P is Markov with respect to D.

We also use the expression that P is a causal directed Markov field with respect to D or say
that P is causally Markov with respect to D. Thus the causal Markov property gives a way of
deriving different probability measures, each representing the probability law associated with
a specific intervention.
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We shall refer to equation (5) as the intervention formula for DAGs. It appeared in various
forms in Spirtes et al. (1993) and Pearl (1993). It is implicit in Robins (1986) and in other
literature.

Intervention by replacement conforms well with the intervention formula (5) as stated
formally in the theorem below, which is theorem 2.20 of Lauritzen (2001).

Proposition 2. Let X = (X,),ep be determined by a structural assignment system cor-
responding to a given DAG D and let P denote its distribution. If intervention is carried out
by replacement, then P is causally Markov with respect to D.

Thus in the case of a DAG there is full harmony between the causal interpretations
determined by data-generating processes, intervention by replacement and the causal Markov
property associated with the DAG. Note in particular that the intervention distributions for
variables in V' are indeed independent of the particular choices of g, and U,.

5. Rationale for chain graphs and their misuse

The modern theory of graphical models, in which a graph is used to represent a set of
distributions, with independence structure encoded by a graph, was originally developed
using undirected graphs (Darroch et al., 1980).

In early applications of undirected graphical models (see for example Edwards and
Kreiner (1983)), the hypotheses of interest were in some sense causal, studying relationships
beween explanatory and response variables. It is clearly unnatural to try to represent a system
of such relations, which are asymmetric, by an undirected graph in which all relations are
symmetric.

This motivated the development of graphical models with directed edges, thereby extend-
ing the work of Sewall Wright on path diagrams, and the theory of recursive SEMs in
econometrics (Wold, 1953).

A pair of variables x, y in a set /" may be said to be directly associated (relative to V), if there
isno Z C V'\{x, y} so thatx 1l y|Z. Typically, if x and y are directly associated then the vertices
are joined by an edge in a graphical model representing this distribution. However, as every
student learns, association does not imply causation. Consequently, if directed edges are used
to denote causal relations then it appears overly restrictive to consider graphs in which all
edges are directed, since to do so would rule out the pos-sibility of non-causal associations.
This motivates the inclusion of undirected edges within the graphs.

However, there are many different reasons why we may not wish to put a directed edge
between two directly associated variables x and y. For example

(a) the association may have arisen due to the presence of
(1) an unmeasured confounding variable,
(i1) some artefact of the way that the sample was selected or
(ii1) a feed-back relationship, or
(b) we may believe that the association is causal but not know whether x causes y or vice
versa.

There is a simple qualitative difference between (a) and (b): in situation (b), additional
knowledge might justify including an edge x — y, whereas this is not so with (a). In
philosophical terms, reasons under (a) would be described as ontological; those under (b)
as epistemological.
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a —=C a —=C
cG, X CG, |
b L2d b —=d

(a) (b)

Fig. 1. Two examples of chain graphs in which ¢ and d are joint responses to a and b

Although the original papers on chain graphs are clear that directed edges are to be
interpreted as (in some sense) causal, whereas undirected edges are to represent non-
causal associations, in which variables are ‘on an equal footing’ this leaves room for
ambiguity because, as we have seen, non-causal associations may arise in many different
ways.

The chain graph CG, in Fig. 1(a) corresponds to the following factorization of the joint
density (assuming that the relevant conditional densities exist):

f(a,b,c,d) = f(c,d|a,b)f(a) [ (D).

In this sense the model treats ¢ and d as being on an equal footing, as it places no restriction
on the form of the conditional density f{c, d|a, b). However, when submodels are considered,
special attention is required. A submodel such as graph CGs; in Fig. 1(b) restricts f(c, d|a, b).
Under the chain graph Markov property, graph CG; implies

allb, alld|{b, c}, bllcl{a,d}

and, as we shall see, the undirected edge in this chain graph cannot be interpreted in any of
the ways listed above other than feed-back.

For example, we might think that the chain graph structure displayed in graph CGj; could
be explained by one of the data-generating processes associated with the DAGs shown in
Figs 2(a) and 2(b). In DAGy ¢ and d share an unmeasured common parent; in the marginal
distribution over the remaining variables

all {b,d}, bll{a,c¢} but apd|{b,c}, bAcl{a, d}

corresponding to an independence structure that is different from that of graph CGs.
In DAGs, ¢ and d share a common child that has been conditioned on. In the conditional
distribution of the remaining variables, given s:

alld|{b, c}, bllcl{a,d} but apb.
Consequently, neither of these generating processes explains graph CGs of Fig. 1(b).
The directed cyclic graph in Fig. 2(c) corresponds to a non-recursive linear SEM; see

Section 7, Spirtes (1995) and Koster (1996) for further discussion of these models. The
following independence relations hold in this model:

aq—e C\ a-—>C\ a—-C
DAG, )/@ DAG; DAG, {3

b—d b—d —

(a) (b) (c)

Fig. 2. (a), (b) Generating processes in which ¢ and d are on an equal footing, that do not give rise to the
conditional independence model given by graph CGs under the standard Markov property; (c) directed cyclic
graph, corresponding to a non-recursive linear SEM, again not Markov equivalent to graph CG3
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allb, allbl{c,d} but alld|{b,c}, bAcl{a,d},

which again does not correspond to graph CGs.

In all three examples there is dependence between ¢ and d, and these variables might be
argued to be on an equal footing. Thus, graph CG; does not merely assert that ¢ and d are on
an equal footing, but a very particular kind of equal footing. This point was made by Cox
and Wermuth (1993), who used it as a motivation for introducing alternative Markov
properties for chain graphs.

5.1. Non-causal associations due to latent variables

We can strengthen the message in the examples above to say that there is no (finite) DAG
model which, under marginalizing and conditioning, gives the set of conditional indepen-
dence relations implied by graph CG;. This was pointed out by Richardson (1998),
who showed that all conditional independence structures which can be obtained by such
marginalization and conditioning from a DAG satisfy a property of between separation
(theorem 1 of Richardson (1998)), whereas graph CG3 does not.

Although not using the terminology of chain graphs, Kiiveri et al. (1984) introduced the
notion of a recursive causal graph as a chain graph where all chain components which were
not singletons had no parents. Variables without parents were exogenous variables, i.e.
variables that set the initial conditions for development of the remaining variables forming
a recursive system determined by a DAG.

One can show (Richardson, 2001) that such recursive causal graphs exactly correspond to
the chain graphs that are obtainable from some DAG by marginalization and conditioning,
as stated more accurately in the following proposition.

Proposition 3. A chain graph K over the variables V represents the same set of conditional
independence relations as derived from marginalizing over a set of variables L and
conditioning on Xg = xgin a set of distributions represented by a DAG D over VU L U S, if
and only if K is Markov equivalent to a recursive causal graph.

5.2. Chain graphs as unions of directed acyclic graph models

Chain graph models are sometimes proposed as being appropriate in situations in which it is
known that an edge is present, but the appropriate orientation of the edge is unknown. Such
circumstances may for example arise during the construction of expert systems when a DAG
is elicited from an expert (Jensen, 1996; Spiegelhalter ez al., 1993).

If D and D, are two DAGs with the same set of adjacencies but, for some pair(s) of vertices
a,b,a < bin Dy, but a — b in D,, then the graph D, ; obtained by replacing common edges
of different directions with undirected edges may contain edges of both types. Note that the
edge set of Dy is the union of the edge sets of D; and D;; see Lauritzen (1996), page 4.

However, as exemplified in Fig. 3, a graph produced by taking unions of DAGs will only
be a chain graph in quite special cases. Two such cases are

(a) when D; and D, have the same adjacencies but differ over the orientation of a single
edge only and

(b) when a graph is formed by taking the union of all DAGs which are Markov equivalent
to a given DAG (Andersson et al., 1997).

However, even if the graph D;; is a chain graph, this does not imply that the model
determined by Dj; is equal to the union of the models determined by D, and D,, which
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i [ 1
DAG DAG
6 ;i_.iz e b—wd
(a) (b)

Fig. 3. (a) Two DAGs with the same sets of adjacencies and (b) the graph formed from (a) by representing
edges of different direction with undirected edges

would be the model obtained by assuming that the direction of certain edges is unknown.
In fact, if we let M(G) denote the set of distributions obeying the Markov property associated
with a graph G and assume that all state spaces have at least two elements, we have the
following proposition.

Proposition 4. Let D; and D; be two DAGs with the same adjacencies, such that Dy, is a
chain graph. Then

M(Dy2) = M(Dy) U M(D)
if and only if D; and D, are Markov equivalent, i.e. when M(D;) = M(D,).

Proof. Frydenberg (1990) showed that if D; and D, are Markov equivalent then they are
also Markov equivalent to D;_, proving one direction.

Conversely, if D; and D, are not Markov equivalent but contain the same adjacencies,
then it follows from proposition 1 that there are vertices vy, vp, « € V such that v; and v, are
not adjacent, and v; — o < v, in one graph, but in the other

U] — o — U, V] «— o — D2 or U] < O < V7.

Suppose without loss of generality that v; — o < v, in D;. Then in Dy, either v1—a or o—u,
(or both).

Hence, for any distribution in M(D;), it must hold that for some set 7" with o € T we
have v; LLv,|T. However, it is easy to construct a distribution in M(D;) in which vy fLv,|T for
any set 7 containing «. Suppose for example that all variables take states 0 and 1. Then let

P(X, = xy|xpa@w) = 3 forallve V\ {«},
P(X = Oxpa(e)) = P(Xy = Oy x0,) = 271+ (= 3) ot
This completes the proof. Ol

One might also consider a population which is a mixture of two subpopulations described
by two non-Markov equivalent DAGs D; and D;. In general such a population will not be in
M(Dy ). See Spirtes (1995) for further discussion.

5.3.  Ordered blocking of variables
An elementary property of chain graphs is that the chain components partition the variables
and may be ordered so that all edges between variables within the same component are
required to be undirected, whereas edges between variables in different components are
directed in accordance with the ordering.

Applied contexts often suggest such an ordered blocking of variables. For example

(a) variables may be divided into risk factors, diseases and symptoms,
(b) in a longitudinal study variables may be grouped according to time and
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(c) in a cross-sectional study, causal knowledge may lead us to divide the variables into
purely explanatory variables, intermediate variables and responses (Cox and Wer-
muth, 1996).

Traditionally, such a substantive ordered blocking has been argued to justify modelling the
variables via a chain graph with chain components compatible with the blocks, and with
directed edges in accordance with the substantive ordering. (Wermuth and Lauritzen, 1990;
Whittaker, 1990; Cox and Wermuth, 1996). Below we show that in many contexts this
procedure is incompatible with the goal of finding the most parsimonious independence
model, when attention is restricted to chain graph models.

Suppose that it is known that a precedes x, but the relation between x and y is unknown;
hence the blocking {a} < {x, y} is proposed, as displayed in Fig. 4(b) and that, in fact, the
simple causal graph DAG, in Fig. 4(a) represents the true model.

The minimal chain graph on {«, x, y} that is compatible with the blocking and contains the
set of distributions over {a, x, y} given by graph DAG; is saturated, as shown in Fig. 4(c).
Thus a search for a chain graph model that is compatible with this blocking would not
identify the simpler model given by DAG;.

Consequently, leaving interpretation aside, restricting attention to chain graph models
with a particular prespecified blocking may preclude finding the most parsimonious model. It
is also simple to see that if a, x and y had been blocked together the marginal independence
would again be missed.

In the example just considered there were no unmeasured ‘confounding’ variables or
selection variables.

We now consider the case where such variables may be present. For illustration we only
discuss the simple case of chain graphs with three vertices, but with one missing edge. Let
V = {x1, x», z}, with the missing edge occurring between x; and x,. Up to symmetry of
labelling x; and x,, there are six different ways in which x; and x, may be ordered relative to
z, as indicated in the second column of Table 1: v ~ w indicates that v and w are in the
same component, whereas v < w indicates that the component containing v precedes the
component containing w in the ordering. Note that for cases 2 and 6 nothing is stated about
the relation between the components containing x; and x,; hence x| ~ x», x; < x3 and x; > x,
are all possible in these cases.

The edges between x; and z, and x, and z, are then determined by the ordering, and
take the form shown. It then follows from the global Markov property for chain graphs
(Lauritzen (1996), page 55) that in cases 1-5 x; LLx;|z, whereas in case 6 x;_LLx,.

We shall show by example that for each of the orderings specified in Table 1 there are
DAGs containing x;, x, and z which obey the specified ordering, and yet violate the con-
ditional independence relations specified by a chain graph under this ordering.

DAG, CG,
a —=X X >)&l'
y y Ny

(a) (b) (c)

Fig. 4. Restricting to chain graph models in keeping with a block ordering may lead to less parsimonious
models: (a) DAG, the generating process; (b) a block ordering {a} < {x, y}; (c) CG4, the minimal chain graph
model for {a, x, y}, compatible with the ordering which contains the model given by DAG,
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Table 1. Chain graphs with three vertices and two edges

Case Ordering Edges in chain graph Independence implied
1 X| ~zZn~X X|—Z—X2

2 X| >z <X X| ¢ Z Xy

3 x|~z <X X1—Z = X x1 x|z

4 X <z~X X1 = Z—X)

5 X <z <X X] = Z DXy

6 Xp <z>=x X| = Z X x11lxy

For cases 1-5 of Table 1 consider graph DAG3 shown in Fig. 5(a), in which /4; and /,
are hidden (i.e. unobserved) variables. It is easy to see that this generating process is
compatible with any of the orderings given in the second column of Table 1. However,
under this model x; llx;, contradicting the independence implied by a chain graph under
the block ordering.

For case 6 consider graph DAG4 shown in Fig. 5(b). Whereas in DAG3; we marginalized
hy and h,, here we consider P(x;, X,, z|s). A simple interpretation of s is that it represents a
selection variable, which takes the same value for all units in the subpopulation being
modelled. See Cox and Wermuth (1996), page 44, Cooper (1995), Spirtes et al. (1995), Spirtes
and Richardson (1997) and Lauritzen (1999) for further discussion. In the conditional
distribution P(xy, xy, z|s) it holds that x; 1L x|z, rather than marginal independence, which is
implied by the chain graph under this ordering.

In fact it may be shown that any DAG that is compatible with the ordering given by case
6 in which no pairwise marginal independence holds among the variables x;, x; and z, but
which satisfies x| llx,|z, will contain variables that are conditioned on; marginalization
alone is not sufficient. This may explain why it is often inferred that conditional indepen-
dence given z is incompatible with x; <z > x;. See for example Mohamed et al. (1998),
page 353.

There are, of course, generating processes which simultaneously satisfy the ordering and
conditional independence structures given in Table 1. Still, we conclude that without back-
ground knowledge that rules out hidden confounding variables, or selection effects, or rules
in the presence of certain edges, information on the ordering of variables cannot be used
reliably to infer conditional independence structure. Hence knowledge of an ordered blocking
of variables alone is not sufficient to justify postulating a chain graph that is compatible with

X1 X2
DAG, DAG, \
Z Z
:
2) s
(a) (b)

Fig. 5. Examples showing that, when latent or selection variables may be present, ordering of variables does not
imply the conditional independence relations given by a chain graph: in graph DAG3 h; and h, are hidden
variables; in graph DAG,, s is a selection variable that has been conditioned on
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those blocks; additional detailed substantive arguments, ruling out (or hypothesizing) the
absence of confounders, are always required.
We conclude this section by making some further points.

(a)

(b)

©

(d)

(©

The chain graphs in the examples given contained at most three vertices. If we view
these graphs as induced subgraphs of a larger chain graph, then the whole discussion
carries over if instead of x; 1Lx;|z and x; 1Lx, we consider x| LLx;|W, with z € W and
z ¢ W respectively.

The problems which we have highlighted that arise due to the presence of hidden
variables would still be present even if all chain components were singletons, i.e. if we
considered DAGs under a fixed ordering.

There are independence structures arising from DAGs with hidden variables that
cannot be represented by any chain graph model. Fig. 2(a) is an example. Wermuth
et al. (1994, 1999), Koster (1999, 2000) and Richardson and Spirtes (2000) have
provided graphical representations of these structures. However, in the simple cases
involving three vertices there is always a chain graph representing the independence
structure. This raises the question why not, in such circumstances, just ignore the
blocking and represent the independence structure directly?

Often it appears that resistance to consideration of models that violate blocking
follows from a naive causal interpretation of the resulting graph. Thus for instance,
if graph DAGs; in Fig. 5(a) is the generating process, then the independence struc-
ture can be represented by the chain graph x; — z < x,. However, if the variables
are ordered, e.g. by time, as z < {x;,x2} then such a model appears to represent the
absurdity of the future causing the past. However, if regarded strictly as representing
an independence hypothesis then such a model presents no difficulties: in fact,
it would lead us to the (correct) conclusion that unmeasured confounding variables
are present. Sticking to the blocking would conceal the marginal independence of
X1 and X7.

In some cases, more principled objections to consideration of a less restricted class of
chain graphs may be adduced: computational issues may be involved in searching a
larger model class, or there may be an intuition that it is unwise to consider too rich
a model class if data are insufficient. However, it would have to be argued that in
these respects a particular class of chain graphs was superior to simple undirected
graphs.

6. Feed-back models for chain graphs

As demonstrated by the previous discussion, chain graph models represent qualitatively
different hypotheses from those represented by DAG models, including DAG models under
marginalization and conditioning. This might suggest that a general data-generating process
for chain graph models would involve infinite processes converging to some type of equi-
librium.

In this section we present some alternative equilibrium data-generating processes with
feed-back that all lead to chain graph models.

We first consider the special case of an undirected graph G and an associated distribution P
with positive density f which factorizes according to the graph, i.e. it has the form

J@) =11 ¢ (6)

ceC
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where ¢. depends on x through x. only and C denotes the set of cliques of G. Such
graphical models originate in statistical physics (Gibbs, 1902), where x denotes possible
states of a physical system and f{x) is proportional to exp{—E(x)} with E(x) denoting the
total energy of the system in state x. The energy is then assumed to be additively built up
by potentials . as

@) = X dixe) = — X log {0}

There are several alternative dynamic systems that all have the distribution P as their
equilibrium distribution. This has been extensively exploited in the literature on Markov
chain Monte Carlo methods for simulating from P (Metropolis et al., 1953; Hastings,
1970; Geman and Geman, 1984; Gilks ef al., 1996). We describe a few of these dynamic
regimes below. Note that the dynamic regimes apply to any distribution with positive
density.

6.1. Data-generating processes for undirected graphs
6.1.1. The systematic Gibbs sampler
The dynamic regime which is simplest to explain is based on the systematic Gibbs sampler
which evolves in discrete time and proceeds by choosing an arbitrary value x’ € X and an
arbitrary ordering of the vertices in ¥ so that V= {1, ..., p}. The vertices are then visited in
the given order, each X, being updated according to its conditional distribution given the
values of X at the remaining vertices. The factorization (6) implies that the density of this
conditional distribution simplifies as
S (xilx-i) = f(xilxba) o< T de(),

ciec
where x_; is a short notation for xy\ ;. The corresponding generating process can be written
in an idealized form as the following ‘computer program’:

x —x°;
i 0;
repeat until equilibrium:
i«— i+ 1 mod p;
x; < y; with probability f(y;|x_;);

return x.

The (random) output X, of this program will have distribution P as desired.

The expressions ‘until equilibrium’ and ‘return x” must be understood in the way that the
random assignments are repeated a very large number of times, so that a ‘stochastic’
equilibrium prevails and then the program returns a ‘snapshot’ in time of the configurations
of the variables.

The system involves feed-back in the sense that the value of X; for any i € V" has been
dynamically affected by all the variables Xy,q(;.

6.1.2. The random Gibbs sampler

The random Gibbs sampler proceeds in a similar way, only the variable to be updated is chosen
at random. Thus here we need not order the variables and can write the corresponding
program as
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x —x;

repeat until equilibrium:
v« rand(V);
Xy < y, with probability f(y,|x_,);

return x.

where rand(¥) chooses a random element from the set V.

6.1.3. Time reversible Markov dynamics
This dynamic regime applies to the case of a discrete state space and is in many ways
physically more plausible than the discrete time schemes described above.

Here the system is assumed to develop as a Markov process in continuous time with
intensities of the form

P{X(¢t + dt) = y|X(t) = x}

q,(¥y, x)dt 4 o(dr) if y= (0, x_,), and y, # x,,
=< 1 —gq(x)dr + o(dz) if y =x,
o(dr) otherwise

with g(x) <1, where g(x) = X, %), 4y, ¢,(7s, ). If ¢, is suitably chosen, these equations describe
a time reversible Markov process with P as the equilibrium distribution (Spitzer, 1971;
Preston, 1973; Besag, 1974b).

In this dynamic model, the system is at rest for an exponentially distributed length of time
and then a randomly chosen site is updated as before. The distribution of the waiting time
depends in general on the current configuration of the system and this is also true of the
conditional distribution of the site to be updated.

6.1.4. Langevin diffusions
In the case of a continuous state space with smooth densities, there is an alternative and very
simple diffusion process known as the Langevin diffusion given as

X(t+ df) = X (1) + S grad(log [ /{X(O)}]) dr + dW (1) (7

where W is standard |V|-dimensional Brownian motion. Under suitable smoothness condi-
tions on f (Roberts and Tweedie, 1996), this dynamic scheme also has P as an equilibrium
distribution. This has, for example, been exploited by Grenander and Miller (1994). Also
here, the gradient simplifies owing to the factorization (6); we omit the details.

6.1.5. The Gaussian case

Next we consider the special case when the joint distribution is assumed to be multi-
variate Gaussian with mean 0 and a non-singular covariance matrix ¥ with inverse K =
37!, The distribution satisfies the Markov property of an undirected graph if and only if
we have

k=0 whenever u 4 v. (8)
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6.1.5.1. Gibbs dynamics. If the vertices of the graph are numbered as V' ={1,...,p}, a
system with Gibbs dynamics is also known as a conditional autoregression (CAR) (Ripley,
1981) or an autonormal prescription (Besag, 1975). Here at time ¢ each variable is updated
linearly as

Xp— D AuXy + &
w:uFv
where ¢, is distributed as N(0, 1/k,,) and a,, = —k,./k,.. If the distribution satisfies the
Markov property of an undirected graph, expression (8) implies that the sum above only
extends over the neighbours of v. We shall write this dynamic scheme as

X+ )& AxX0) + et + 1) 9)

where A is the matrix of coefficients. The special assignment symbol and asterisk indicate that
this is not a standard matrix equation but updating is made sequentially by row.

Clearly, although any matrix 4 would make sense in the updating equation (9), such a
matrix would not necessarily correspond to Gibbs updating for a multivariate Gaussian
distribution with some covariance matrix X. For this to be the case, 4 must at least have
diagonal elements 0 and also satisfy an equation of balance

QuvOoy = AouOuus (10)

where o0, is the variance of the innovation e¢,(f). If the variables are scaled to have
innovation variances 1, the necessary and sufficient condition for the CAR system to be a
Gibbs updating scheme corresponding to a multivariate Gaussian distribution is that A
have diagonal elements 0 and that / — 4 be symmetric and positive definite (Besag, 1975;
Ripley, 1981). The covariance matrix of the equilibrium distribution is then given by
T=(- A"

If A does not satisfy these conditions, the behaviour of the updating scheme will typically
depend on the ordering of the variables and several patterns of behaviour are possible; see
Appendix A.

6.1.5.2. Langevin dynamics. In the Gaussian case, the Langevin diffusion corresponds to
the stochastic differential equation

X(t+dn) = X(1) — 1K X(1)dr + dW(2). (11)

Besag (1974b) studied Markov systems as equilibrium distributions for more general dif-
fusions of the type

X(t + df) = X(¢) + CX(0)dt + dZ(), (12)

where Z(f) is Brownian motion with covariance matrix V{dZ(f)} = A; see also Cox and
Wermuth (2000). The equilibrium distribution exists if and only if C is a stability matrix, i.e.
the real parts of the eigenvalues of C are negative. In this case, the equilibrium distribution is
determined as the Gaussian distribution with mean 0 and covariance matrix equal to the
unique solution of the matrix equation

A+CT+2C=0. (13)

Clearly there are many more choices for C and A leading to £ = K~ than C = —K/2 used in
the Langevin diffusion (11). Proposition 5 below shows that this choice has a distinguished
intervention property.
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6.2. Intervention in undirected graphs

Each of the dynamic schemes described above corresponds in a natural way to an inter-
vention model. For the systematic and random Gibbs sampler as well as the time reversible
Markov dynamics, the intervention X < x; corresponds to replacement of the correspond-
ing lines in the program, just as in the DAG case. Clearly, when intervention is modelled in
this way, it has the same effect as ordinary conditioning, i.e. for B = V'\4 we have

P(XB :xB|XA <—)C/T):P(XB :XB|XA :xj) (14)

For the Langevin dynamics, the natural description of the effect of an intervention
X, — x; would be to replace the original diffusion equation (7) with

Xp(t + dt) = Xp(2) + 5 grad(log [f {Xp(1), xi'}]) dt + dWp(0). (15)
Since the density obtained by conventional conditioning is given as

feplxd) o f(xg, x1),

the diffusion (15) has equilibrium equal to this conditional distribution, so condition (14) also
holds in this case.

If we consider a more general dynamic regime such as the diffusion (12) this may no longer
be true. Indeed we have the following result in the Gaussian case.

Proposition 5. Let P be the equilibrium distribution of the diffusion process (12) with
A = I If intervention is made by replacement, then
P(Xg = xp|Xy — xJ) = P(Xp = xp| X4 = xJ)
if and only if C is symmetric and negative definite. It then holds that C = —X~'/2, where X is

the covariance matrix of the equilibrium distribution.

Proof. If C is symmetric it is a stability matrix if and only if it is negative definite. Then the
unique solution to equation (13) is clearly £ = —C~'/2. Thus equation (12) is the Langevin
diffusion and the intervention formula (14) holds.

Next, assume that formula (14) holds. The effect of an intervention under this diffusion
leads to

Xp(t + di) = Xp(r) + Cpp Xp (t)dt + Cpaxi dt + dZp(0),

where the matrix C has been partitioned into appropriate blocks. The equilibrium dis-
tribution of the intervention diffusion has expectation equal to

E(Xg||x) = —Cpy Cpaxi
and its covariance matrix is the unique symmetric solution Qpp to the equation
I+ CppQpp + QppCpg = 0.
If this distribution is equal to the conditional distribution, we must have
Cs3Cia = KgzKps (16)
and
I+ CppKpy + Ky Cip = 0. (17)

From the special case where B = {v} is a singleton, we obtain from equation (17)
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Cow = —ky/2
and inserting this into equation (16) yields for all u # v
Cou = Covkyy by =~k )2

and thus C = —K/2 as required. In particular this implies that C is symmetric and negative
definite.

6.3. Data-generating processes for chain graphs

We recall from Section 3.1 that in a chain graph situation we have a distribution P with a
density which factorizes in two stages (Lauritzen, 1996). If 7 denotes the set of chain
components of G, we have

f(x) = H f(xr|xpa(r))»

€T

where each factor further factorizes.

Similarly, the data-generating processes for chain graph models have two loops. The outer
loop corresponds to the DAG of chain components, where each chain component is updated
in a scheme satisfying the restriction that variables in parent components have been assigned
their values when the update is to be made:

X; — G:(Xpa(r)» teT.

The inner loop, represented by G,, updates the variables in the chain component 7. For
those components that are not singletons, G, represents one of the generating processes for
undirected graphs applied to a chain component 7 for a fixed value of the variables at its
parents Xp,(7). It then becomes a function of these, so that the program G takes xp,(;) as input
and gives x, as output. In its random form, the program becomes

function G;
Input xpa(7);

Xp — x?;

repeat until equilibrium:
v « rand(r);
Xy < Y, with probability f(yv|xr\{v}axpa(r));
return x;

and similarly in its systematic form. Only variables in the specific chain component 7 are
updated during this inner loop. Thus variables on an equal footing are updated in the same
inner loop if they are also in the same chain component, whereas such variables are updated
independently and possibly in parallel if they are in the same ‘box’ but different chain
components.

This procedure can be written in a way that makes its functional character more explicit,
thereby making the analogy to traditional structural equation systems clearer. We let
e = (e!,¢%, ...) denote a sequence of independent and identically uniformly distributed
variables which are used as input to the function g, jointly with Xp,;). Again, using the
random variant of the Gibbs sampler, this yields
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function G;
input (xpaer), €°);
Xe X2
n<«0;
repeat until equilibrium:
v+ rand(r);
n«—n+1;
Xy Iy (o} Xpa(o)» €);
return x;.
Here h is chosen so that, if U is uniformly distributed on the unit interval, then
(X (v} > Xpar)» U) has density f(y, |xr\{u},xpa(r)), i.e. A} is a direct Monte Carlo simulator for
this conditional distribution.

If the chain component 7 is a singleton, equilibrium is achieved immediately, and we
simply obtain that

gr(xpa(r)» g) = hr(xpa(r)a 81)~

If we order the chain components as 7y, ..., 7, and the variables in each chain component
t,={n; +1,...,n;+ t;} and use the systematic variant of the Gibbs sampler, a full structural
assignment system associated with a general chain graph has the form

X Xo;
fori=1,...,p
J=0
repeat until equilibrium:
J—Jj+ 1 mod(x)
Xutj = (X (s Xpace), Tunif);

return x,

where again h,’ is suitably chosen. As in the directed acyclic case, we have the following
proposition.

Proposition 6. If P is a distribution with strictly positive density which satisfies the Markov
property on the chain graph G and X is defined through a structural assignment system as
above, then X has distribution P.

Proof. The fact that the structural assignment system leads to (X;,t € 7) satisfying the
Markov property of the DAG formed by the chain components of G is seen exactly as in the
directed acyclic case; see for example Lauritzen (2001), theorem 2.20.

Clearly, for each fixed xp,(;), the conditional distribution of the random function G.(xpa(r))
has density f(x.|Xpar)) as the Gibbs sampler was designed to sample the variables in 7 from
this conditional distribution. Thus the joint density of X must be given by equation (2) as
desired. O

We have thus constructed several dynamic regimes which all lead to models with con-
ditional independence structure determined by a chain graph.
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Since equilibrium may not be attained in finite time, each of the generating processes is to
be considered an approximation to a situation in which the real updating within each chain
component is developing so fast that the equilibrium can be considered instantaneous,
relative to the time elapsed between the generation of different chain components. Each chain
component outputs a random snapshot of its state, which in turn is used as input for the next
chain component equilibrium process.

The plausibility of such generating processes in any given context clearly depends on that
context. Generally, systematic updating seems somewhat unnatural as there cannot be a
natural ordering of variables considered on an equal footing and the more complex schemes
of random updating, continuous time Markov processes or diffusions have generally more
intuitive appeal.

6.4. Intervention in chain graphs
If the intervention X, « x4 is made in the data-generating processes of Section 6.3 by
replacement in each chain component as described in Section 6.2, it follows as in the directed
case that this leads to the formula

P(x|lxs) = Qp(xr\A [Xpa(e)s Xrra)- (18)
1€

This specializes to the intervention formula (5) in the fully directed case and Bayes’s
formula in the undirected case: in the fully directed case, all chain components are
singletons, so either 7\4 or T N B are empty; in the undirected case pa(r) are all empty.
The formula also conforms with the calculus of decision networks based on chain graphs
as discussed in Cowell et al. (1999), where interventions are then described by decision
nodes. Since

p(xr\Alxpa(f)axtﬂA):Z_l(xpa(‘c)axrﬂA) I[I ¢cxo),
CEA)
where Z is a normalizer as before, an alternative argument for formula (18) may be based on
the assumption that the potentials - = log(¢c) are stable under intervention, as they
represent physical laws beyond control of the intervening. This directly generalizes the idea
used for causal DAGs, where conditional distributions of children given parents were
considered stable under intervention.

6.5. Equilibrium dynamics and infinite directed acyclic graphs

It is illuminating to think of the equilibrium dynamics described in terms of infinite DAGs. If,
for example, we consider the simple chain graph CGj; in Fig. 1(b), the generating process
corresponding to this graph using the systematic Gibbs sampler dynamics would first
independently choose values x, and x;, for the variables labelled @ and b, and then use these as
input for an equilibrium process updating of ¢ and d as indicated in Fig. 6. Using the global
Markov property on the DAG in Fig. 6 yields

diJ.LaHC,', b} and C,’J.LbHdi,] , a}
whereas in general
ci Lb|{d;, a}

since b and ¢; are common parents of d; in the update scheme described.
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Fig. 6. Infinite DAG corresponding to a structural assignment system for chain graph CG3 of Fig. 1 where cis
updated before d in each inner loop

Thus taking a snapshot as
(XC’Xd) — (XC;’Xd,‘)

will not reproduce the desired conditional independence ¢ 1Lb|{d, a}.

However, when the conditional distributions in the infinite DAG are consistent in the
sense that for fixed values (x,, x;,) there is a joint distribution of (X, X,;) from which the
conditional update distributions are derived (as holds under Gibbs dynamics), then (X, Xy,)
and (X;,, Xz _,) have the same equilibrium distribution; see Appendix A. It therefore holds in
equilibrium—and thus approximately for large i—that ¢; 1Lb|{d;, a}, provided that such
update distributions are used.

7. Linear structural equation models

7.1. Basic terminology
In a linear SEM, variables are conventionally divided into two disjoint sets: substantive
variables and error variables (Bollen, 1989). A further distinction between ‘exogenous’ and
‘endogenous’ substantive variables is sometimes made; we have not done so as it is not
relevant to our discussion.

A unique error term g, is associated with each substantive variable X,, v € V. A linear
SEM contains a set of linear equations, one for each substantive variable, expressing X, as a
linear function of the other substantive variables, together with ¢,. In vector notation

X =TX +e, (19)

where y,, = 0. In any given structural model some off-diagonal entries in I" may also be fixed
at 0, depending on the form of the structural equations. If, under some rearrangement of the
rows, I' can be placed in lower triangular form, the system of equations is said to be recursive;
otherwise it is said to be non-recursive.

If we define a directed graph with vertex set ' by having a directed edge from u to v if and
only if y,, is not fixed at 0, an SEM is recursive precisely when this graph is a DAG. In a non-
recursive system, there might be edges between vertices in both directions if y,, and y,, are
both allowed to be non-zero.

The term ‘equation’ is really misplaced, and it seems more appropriate to use the term
‘structural assignment model’ and to write expression (19) as

X—TX +e.

If T is lower triangular and has 0 in the diagonals, this expression can be given an unam-
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biguous meaning by making the assignment sequentially by row, but in general it is not
obvious which meaning to attribute to such an assignment symbol.

In the traditional interpretation of an SEM a multivariate normal distribution over the
error terms is specified as for example ¢ ~ N(0,A). In any particular model, some off-
diagonal (J;) entries in A may be allowed to be non-zero. If A is not diagonal then the model
is said to have correlated errors.

If (/ — T) is non-singular, the traditional interpretation of an SEM determines a joint
distribution over the substantive variables by solving equations (19) to obtain the reduced
form equations

X=(U-1)"g,
yielding
X ~N(@0,%) withZ'=K =0 -D)TA g -1).

Much controversy and confusion in the literature is due to treating the assignment systems
as equation systems in this way and uncritically moving variables between the left-hand and
the right-hand side of expression (19). This can make a radical difference, in particular when
the effects of interventions are considered. See for example Pearl (1998) and Spirtes et al.
(1998) for a detailed discussion of these and other issues concerning SEMs.

The distribution obtained in the traditional way should be contrasted with the CAR
interpretation (9) which in the case of A=1, A =T"and I — T positive definite would lead to
K=({I-T).

The following example of a non-recursive SEM with uncorrelated errors can naturally be
associated with the directed graph of Fig. 2(c) with a relabelling of the vertices as (a, b, ¢, d) =
(1,2, 3, 4):

X = e,

X2 = &,
X3 = Y3X1 + VX4 + &3,
X4 = YpX2 + V43%3 + &4,
on O 0 0
0 o0n O 0
0 0 65 0
0 0 0 04

A:

Fisher (1970) presented a dynamic process whose time average gives the distribution
described by a linear non-recursive SEM. Here the system is occasionally subjected to
random exogenous disturbances of the exact equilibrium. The eigenvalues of T" are required
to be less than 1 for convergence of the time averages; see Richardson (1996) for a more
detailed description of this equilibrium process.

This equilibrium interpretation can thus be seen as being deterministic, but with random
boundary conditions. In the next section we discuss an interpretation of non-recursive
structural equations in terms of stochastic equilibrium.

As mentioned, using the intervention interpretation of structural equations given by Strotz
and Wold (1960) leads here to an intervention distribution which is different from those
earlier described. Indeed, if in the example given we intervene as X; < xj we obtain the
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recursive SEM

x| =&,
X = &2,
X3 = P31X1 + V34X + &3, (20)
onp 0 0
A=]1 0 o0n O
0 0 O3

7.2. Chain graph models for structural equations
The chain graph models and corresponding generating processes can in some cases give an
alternative interpretation of a structural equation system with coefficient matrix T".

To make such an interpretation we associate an undirected edge with every pair (u, v) for
which y,, and y,, are both allowed to have non-zero values, instead of two directed edges as
used above. The SEM described in the above example would then correspond to the graph
CGgs; in Fig. 1(b).

The graph of an SEM under this interpretation may not in general be a chain graph and
unless this is the case the model will not have a chain graph interpretation. But, if it is, the
dynamic schemes discussed in Section 6 could be used to give an alternative interpretation of
an SEM with feed-back.

Then, in each chain component of the graph, the structural equations are interpreted as
conditional autoregressions. More accurately, the chain components are first ordered in a
sequence that is compatible with the chain graph and then each part of the assignment system
is interpreted through Gibbs updating as

Xr(t + 1) ‘E Fr * XT([) + Fr,pa(r) * Xpa(t) + Sr(t + 1)

where the subscripted matrices are appropriate submatrices of I' and the asterisk denotes that
the update is to be made sequentially by row.

As mentioned in Section 6.1.5, such a specification does not always correspond to a well-
defined distribution. The system should satisfy

YusOvo = VouOuu whenever both are non-zero. 21

Thus there is only a single free parameter to describe the relation between two variables
instead of two as in a conventional SEM. In addition—if we again assume that the vari-
ables have been scaled to have error variances 1—the submatrices I, — I'; induced by the
corresponding chain component would have to be positive definite. In the example considered,
these conditions would amount to

734044 = 43033 and V34743 < L.

The first condition ensures balance whereas the second condition ensures stability of the
dynamic system. Arnold et al. (1999) investigated this bivariate case in detail.

Thus, non-recursive SEMs would only admit a chain graph representation under quite
special circumstances and the equal footing of variables in the same chain component under
this interpretation demands complete ‘symmetry of forces’ as represented by the relation (21).

If the conditions above are fulfilled, the distribution after intervention as Xs — xi becomes
the same as in SEM (20), but now it is obtained from the joint distribution by the intervention

BSUBD1T SUOWLLOD) SAIES.1D) (et |dde au Aq pausonoh aie sap1Le YO ‘asn JO SN 104 ARig1T dUIUO AB[IAM UO (SLORIPUOD-PUR-SWIBI WD A3 1M ARe1q 1 pUI|UO//SA1L) SUORIPUOD PUe SWIB | 8YY8dS *[£202/TT/L2] uo ARigiiauliuo Ao ‘3d3,72a and euioljqig Aq 0vE00'8986-9vT/TTTT OT/I0P/L0 A 1M Aleiq U1 |U0'SSl//SANY Wo1y papeo(umod ‘€ ‘2002 ‘8986297 T



Chain Graph Models 343

formula (18). The joint distribution is different under the chain graph interpretation of the
SEM, for which expression (19) would not lead to the distribution (20).

Ord (1976) also suggested the use of the CAR interpretation for simultaneous equation
models in economics, whereas Wermuth (1992) suggested quite a different chain graph
representation of simultancous equations with other special restrictions on the parameters;
see Lauritzen (1996), pages 154-155.

8. Discussion

The results presented in this paper have consequences in several contexts.

8.1. Causal directed acyclic graphs versus causal chain graphs

There is a large body of work which takes as its starting-point the assumption that the
variables in the population of interest were generated by a causal DAG as described in
Section 4, possibly with some variables unobserved. The considerations in Section 6 indicate
that in some circumstances this assumption may be unduly restrictive: if feed-back is present
then the model for the equilibrium distributions of the population of interest could sometimes
be adequately described by a causal chain graph. See also Bentzel and Hansen (1954) for a
similar discussion in the context of recursive versus non-recursive SEMs.

8.2. Undirected edges and causal underdetermination

As mentioned in Section 5, one original motivation for introducing graphs with both
undirected and directed edges was to allow direct associations that were not assumed to be
causal. In particular an analysis which leads to a chain graph, rather than a DAG, might at
first sight appear to be more ‘causally prudent’. However, as we have shown, the situation is
more complicated.

(a) If the chain graph is not Markov equivalent to a ‘recursive causal graph’, then the
graph contains an undirected edge which essentially is only interpretable via feed-
back.

(b) Chain graphs do not in general represent the independence structures that arise from
DAGs with hidden variables. For this, other types of graph are required.

(c) A chain graph may be used to represent the union of a set of DAGs with common
adjacencies only if the DAGs are all Markov equivalent.

Thus only certain undirected edges may be interpreted as (prudently) representing a
collection of causal hypotheses; refraining from assigning a direction to an edge may amount
to making a definite commitment to a particular causal hypothesis. Further, there are
alternative causal hypotheses involving hidden variables that are excluded by restricting
attention to chain graphs.

8.3. Data analyses using chain graph models and blocking

As shown in Section 5.3, restricting attention to the class of chain graphs that are compatible
with a prespecified ordering will often be incompatible with finding the most parsimonious
model. This seems undesirable.

(a) If the primary goal of the analysis is prediction (of the joint distribution) then
parsimonious models are often preferable.
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(b) If explanation is the goal then a less parsimonious model—which will include ‘extra’
edges—may often be misleading; see Fig. 4.

However, if the goal is to gain insight into possible causal data-generating processes then the
most parsimonious model may fail to represent all causal relations if there is parametric
cancellation—also known as a ‘violation of faithfulness’ (Spirtes ez al., 1993) or ‘lack of
stability’ (Pearl, 2000)—since in this case not all the independence relations holding in the
population will be due to causal structure. In many circumstances it may be reasonable to
assume that such cancellations do not occur (Spirtes et al., 1993; Meek, 1995; Pearl, 2000),
but without such an assumption the most parsimonious model will not reflect the process that
generated the data. However, if we have good reason to believe that parametric cancellation
is present, then this might argue against attempting to model the independence structure to
understand the generating process.

The alternative of directly modelling the conditional independence structure without
assuming that it arises from a generating process appears intractable; even for only four
variables there are 18300 such structures for discrete distributions; see Matus (1999) and
references therein.

If background knowledge is available it would seem desirable to exploit this when
performing model determination. However, as shown in Section 5.3, when hidden variables
may be present, knowledge about ordering may not yield any information which is relevant
for restricting the class of possible independence models. An alternative approach would be
to use background knowledge after a model search has been completed to narrow down a set
of candidate models.

8.4. Chain graphs under the alternative Markov property

An alternative Markov property for chain graphs has been proposed by Andersson et al.
(1996, 2001). Hence, in general, different statistical models may be associated with the same
chain graph. For example, with this alternative interpretation the graph CGs; in Fig. 1(b)
encodes the independence relations

allb, all{b,d}, bl {a,c}

and hence this model is Markov equivalent to the generating process corresponding to graph
DAGqy in Fig. 2(a). However, there are other chain graphs for which the alternative property
results in an independence model that again cannot be obtained from any finite DAG by
marginalizing or conditioning (Richardson, 1998).

In this paper we have shown that chain graphs under the original Markov property
describe certain types of feed-back system. This naturally raises the question which
generating processes correspond to chain graphs under this alternative Markov property.
Cox and Wermuth (1993) discussed other possible ways of encoding conditional indepen-
dence relations using chain graphs, for which the same question may arise.

8.5. Conclusion

A remark in Spiegelhalter et al. (1993) foreshadows many of our conclusions: in a response to
comments made by Glymour and Spirtes they state that ‘chain graph models represent. ..
equilibrium systems’ (page 278). In this paper we have constructed dynamic processes with
equilibria corresponding to chain graphs, and we have also shown that this remark may be
strengthened to say that, in general, chain graph models on/y represent such systems well and
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then under quite subtle dynamic regimes. In addition, we have extended the intervention
theory for DAGs to these dynamic systems.
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Appendix A: Limiting behaviour of Gibbs dynamics

In the following we let ¢ = (¢,).c denote a family of conditional specifications, i.e. ¢,(‘|x_,) denotes for
all x_, € Xy, a probability distribution over X,. For simplicity we assume that the support of g,(|x_,)
is equal to X, for all v € V, i.e. that

qu(A|x_,) >0 for all open sets 4 C X, (22)

We say that q is consistent if there is a probability measure u on X such that, forallv € V, ¢, is a
version of the conditional distribution with respect to p of X,, given X_, = x_,, i.e. if there is a u
satisfying the equation

) = / qo(Alx—p) p,(dx_y), forallveV. (23)

If we introduce the transition kernel Q,
0u(dlx) = qu(Alx—p),
we may rewrite equation (23) in a shorter form:
u=u0,, forallve V.

If g is consistent, we know that the Gibbs sampler forms a Markov chain which converges to the
uniquely determined equilibrium distribution. We shall briefly discuss the possible behaviour of the
systematic Gibbs sampler in cases where ¢ is not necessarily consistent.

So consider V' numbered as V' = {1,..., p} and define for each permutation = € S(p) the transition
kernel

P(1t) = On(1y0n(2) - - - On(p)-

Then P(n) is the transition kernel of the Markov chain formed by the systematic Gibbs sampler using ¢
as its update distribution, and updating the sites in the order determined by n. Condition (22) ensures
that this Markov chain is irreducible and aperiodic. We then have the following results.

Lemma 1. Let e be the identity permutation. Then P(e) has an invariant distribution if and only if
P(0) has an invariant distribution for all cyclic permutations o.

Proof. First we show that if u is an invariant distribution for P(e) then uQ,; ... Q;_; is invariant for
P(0;), where 6; = (i,...,p, 1,...,i — 1). This follows from the calculation

pO1 ... Qi1 P(o)) = pP)Qr...Qi 1 = uQr ... Qi 1.

The converse follows by renumbering V. O

Consequently we obtain the following proposition.
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Proposition 7. The following conditions are equivalent for a probability measure p on X:

(a) uP(n) = u for all = € S(p);
(b) uP(o) = p for all ¢ € S(p) with o cyclic;
(¢) u=pQ;forallieV.

Proof. We show that (a) implies (b) implies (c) implies (a). The implication (a)—~(b) is trivial. If
condition (b) holds, and i € V, we obtain

Qi P(0i11) = p P(0:)0i = pQ;.

Thus uQ; is an invariant distribution for P(o;). As the invariant distribution is uniquely determined, we
must have uQ; = u as required for condition (c).
That condition (c) implies (a) is easily shown by the repeated use of the relations uQ; = u:

P = 10,(1)0r(2) -+ a(p) = Hn(a) -+ Cnlp) =+ = HLs(p) = 1
This completes the proof. U
Further, we have the following corollary.

Corollary 1. The specifications ¢ are consistent if and only if, for all permutations = € S(p), P(n) has
an invariant distribution u(x) which is independent of =.

Inconsistency of ¢ might thus show up in two different ways. It may happen that P(rn) is transient, in
which case there is no invariant distribution and the Gibbs sampler will drift away. Alternatively, it may
exhibit stationary behaviour, but with a limiting distribution depending on the particular choice of
ordering 7 in the sitewise updating. If the state space is finite, transient behaviour is not possible.

If the state space is infinite and | 7| > 3, it may be that the Gibbs sampler converges to equilibrium
for one permutation x but shows transient behaviour for another permutation n’, provided that = and 7’
are not cyclically equivalent.

Stationary behaviour of the Gibbs sampler in the inconsistent case can be particularly dangerous in
certain applications, as in most cases only a single ordering is chosen or the random updating scheme is
used. The Gibbs sampler will then, without any warning signals, converge to a limiting distribution g,
but the specifications ¢ will not be conditional distributions with respect to this p and the results
obtained may thus be misleading.

It has been suggested (Hofmann and Tresp, 1998; Hofmann, 2000; Heckerman et al., 2000) to use
what Heckerman et al. (2000) termed the ‘pseudo-Gibbs sampler’ in any case, in particular when the
distributions are expected to be almost consistent. This could, for example, be expected when the
specifications ¢ have been determined from empirical data. However, it would be desirable to have a
more precise understanding of the general relation between the limiting distribution u of a stationary
pseudo-Gibbs sampler and the conditional specifications g.
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Discussion on the paper by Lauritzen and Richardson

A. P. Dawid (University College London)
There are three intertwining strands to this paper.
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(a) The authors point out, by examples, that the semantics of chain graph models of conditional
independence (involving only observable variables) are not the same as the semantics of directed
acyclic graph (DAG) models, even after possible marginalization over and conditioning on un-
observed variables.

(b) They describe some data-generating processes that lead to chain graph models (although typi-
cally only as an asymptotic equilibrium).

(¢) They consider ways in which intervention in a system may affect the underlying distribution, and
how this might be modelled.

The first point should not really be a surprise—after all, why should the two different representations
be equivalent? The fact remains that practitioners who are less thoughtful than the authors (i.e. all of
us) can all too easily fall into the error of using a chain graph model when what is needed is a DAG
with unobserved variables (or some other graphical representation). The authors have done a valuable
service by pointing out the problems and misunderstandings that this mistake can bring about.

There is, however, a crucial omission from this paper: nowhere does it provide a clear statement of
how we can query a chain graph model to extract the conditional independence statements that it
implies. Without a clear understanding of this procedure, it is difficult to follow the authors through
their analyses of the conditional independence properties of their graphs. The missing statement (based
on the so-called ‘moralization criterion’) can be found, for example, in section 5.4 of Cowell et al.
(1999). For completeness, I give it here.

Let 4, B and C be three subsets of the variables J whose joint distribution is represented by a chain
graph G. We first restrict attention to the subgraph induced by the smallest ancestral set containing
AU BUC, where a set of variables is termed ancestral if, whenever it contains a variable v, it also
contains all parents and neighbours of v in G. In that subgraph, we add an edge (if necessary) between
two nodes if they have children in a common chain component (‘moralization’), and then remove all
arrow-heads. Then we can infer 4L B|C if, in the resulting undirected graph, every path from a node in
A to a node in B intersects C. So long as the joint density f(-) of all the observations is everywhere
positive, this Markov property is logically equivalent to the existence of a factorization as displayed in
equations (2) and (3). In fact, equation (3) can be simplified: since pa(r) is a complete set in (Geupa()”
the normalizing constant Z can be absorbed into one of the ¢-terms and so need not be explicitly
included.

The second strand of this paper, describing underlying data-generating processes, is important in
three different ways. First, it is essential for many probabilistic and statistical tasks to have a way of
simulating from a specified model. Secondly, an understanding of how the model arises as for example
the equilibrium distribution of a well-defined process is invaluable as an aid to an interpretation of what
the model is actually saying. And, thirdly, such generating processes can be used, as described in Section
6.4 of the paper, to extend the model to situations involving interventions—so interweaving with the
third strand. The authors use this approach to develop their formula (18), which can be regarded as a
canonical way of constructing an interconnected collection of models (describing the effects of an
intervention to set X 4, for various choices of A4), using as starting-point a pair (G, P), where distribution
P is Markov with respect to chain graph G. It should be emphasized that both these ingredients are
required to define this ‘canonical extension’. If P is Markov with respect to G;, and G, is Markov
equivalent to G; (as described in proposition 1 of the paper), then of course P is Markov with respect to
G,. Nevertheless the associated collection of intervention models, given by equation (18), will differ.
Which—if either—of these intervention collections corresponds to the way that the world actually
works cannot be a matter of algebraic manipulation, but of empirical investigation. In particular, in
interpreting equation (5) we must regard the two sides as defined quite independently of one another,
the left-hand side being determined by how the world actually works, and the right-hand side by
pushing symbols around. Since in general there is no good reason to expect equality between these two
very different things, to say that a DAG D is causal for P is a very strong requirement, even when P is
Markov with respect to D. Likewise, when P is Markov with respect to a chain graph, there is absolutely
no reason why formula (18) should describe the actual effects of interventions: it is merely a math-
ematically convenient suggestion, possibly worth further empirical investigation.

Now we do not have to think in terms of generating processes to make sensible suggestions for
modelling intervention. Instead, we might attempt to modify the graph to incorporate such inter-
ventions. For DAG models, this approach has been followed by Spirtes et al. (1993), Pearl (2000),
section 3.2.2, and Lauritzen (2000) and further developed by Dawid (2002a,b). It extends readily to
more complex graphical representations such as chain graphs.
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Fig. 7. Three equivalent chain graphs
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Fig. 8. Corresponding augmented graphs

Thus consider the three simple chain graphs displayed in Fig. 7. These are trivially Markov equiv-
alent, none of them putting any constraint whatsoever on the joint density f{x, y) of x and y. Graphs
7(a) and 7(b) correspond respectively to the always available factorizations f(x, y) = f(x) f(y|x), and
f(x,y) = f(y) fix]y), whereas graph 7(c) represents the trival factorization f{x, y) = flx, xy).

To supply a model for the effects of an intervention at x, we introduce a new intervention node F\,
together with an arrow from F, into x. The resulting augmented graphs are displayed in Fig. 8.

The possible states of F, are the same as those of x, together with an additional state .
Conditionally on F, = J, the joint density f{x, y|J) is taken to be that corresponding to (x, y) arising
naturally. A value x* # (J for F, is interpreted as corresponding to an intervention to set x to the value
x*. Obviously, given F, = x*, the distribution of x must be degenerate at x*. The question is: ‘How
should we model, in a canonical way, the resulting distribution of y7’.

Even through F\, is not a regular random node, let us apply standard graphical semantics to the
augmented graphs. Using proposition 1 of the paper we then see that graphs 8(a) and 8(c) are
equivalent—but these are not now equivalent to graph 8(b). Correspondingly, using the moralization
criterion we find that for graphs 8(a) and 8(c) the associated graphical model implies y_ Ll Fy|x, whereas
for graph 8(b) it implies yIl F,. The former property implies fly|x = x*, F, = x*) = f{y|x = x*,
F, = ). That is, the density of y when we intervene to set x = x* is being taken to agree with the
conditional density f(y|x*) calculated from the natural joint distribution. However, the property y L F,
embodied in graph 8(b) implies f{y|Fx = x*) = f(), i.e. the interventional distribution of y is now being
taken to agree with its natural marginal distribution.

In general neither of these assumptions is obviously preferable to the other, and in applications either
or both may fail to provide a good model for how the world actually behaves. The advantage of using
augmented graphs such as those in Fig. 8 is that they display with great clarity exactly what is being
assumed, so laying this open to reasoned criticism and empirical testing.

Consider now the more complex chain graph model displayed in Fig. 9(a). Again we can introduce a
node F, to model an intervention at x. The resulting augmented graph is displayed in Fig. 9(b). The
broken lines represent the moralization edges required whenever either x or y is included in the variables
whose conditional independence is being queried.

From Fig. 9(b) we can read off the following properties:

(a) 1L{a, b, F} (mutual independence of a, b and F,)—i.e. a and b are independent, and moreover
are unaffected by (and do not affect) whether x arises randomly or is set by intervention;

(b) ylL(Fy,a)|(b, x)—the distribution of y given b and x is unaffected by further conditioning on a
and moreover does not depend on whether x arises randomly or is set by intervention;

(c) xLLb|(a,y, Fy)—the distribution of x given a and y is unaffected by further conditioning on b,
when x arise randomly (the same property under intervention at x holds trivially).

a b Jammmeo b
X y I’}'—»x y
(@ (b)

Fig. 9. (a) Chain graph and (b) augmentation
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Once again, these properties may or may not be appropriate for any particular physical process that
we are trying to model, but they are reasonably natural, and—most importantly—are clearly and
explicitly displayed in the augmented graphical representation.

The above construction, extended to allow multiple intervention nodes each pointing into its
associated regular node, can clearly be applied to an arbitrary chain graph. It is then not difficult to
check that formula (18) follows directly from the moralization criterion applied to the associated
augmented graph, without any need to consider underlying generating mechanisms.

The method can be applied still more generally, to other graphical representations such as reciprocal
graphs (Koster, 1996), annotated graphs (Paz et al., 2000) and Markov chain graphs (Koster, 2000), as
well as to alternative semantic interpretations of chain graphs (Andersson et al., 1996). Appropriate
canonical formulae to describe the effects of interventions in such other graphical frameworks can then
be derived from the relevant semantics, applied to the augmented graph.

It will be obvious that I have been greatly stimulated by this paper, and it gives me much pleasure to
propose a vote of thanks to its authors.

D. R. Cox (Nuffield College, Oxford)

Much as I admire both Professor Lauritzen and Professor Richardson’s work, I think that the present
paper, while containing interesting discussion, is marred by taking too limited a view of the notion of
chain independence structures. Take a simple case of four nodes representing two response variables Y
and Y, and two explanatory variables X; and X5. Then a missing (directed) edge between, say, ¥; and
Y, represents the independence Y, 1L X»|Y>, X1, i.e., when we consider the dependence of one component
response on explanatory variables, we take the other response variables as explanatory. Now this idea
induces an interesting and important class of models, developed by Lauritzen and Wermuth (1989) in
their landmark paper. But, as indeed the present authors recognize, this is not the only possibility and
Cox and Wermuth (1993, 1996) suggested a second type of graph with directed and undirected edges,
which they represented with broken lines. This covers the possibility that the missing edge represents
instead Y; 1L X>|X), i.e. considering in the conditioning set only truly explanatory variables.

It seems to me that, however we choose to represent them, we need to recognize such structures as
having both a simple generating process and an interpretation that are different from but at least equally
legitimate as the first. Indeed the overwhelming majority of mainstream statistical discussion is of the
second not the first structure. Recall, for instance, the multivariate linear model and the notion of
seemingly unrelated regressions. It is true that for the second kind of structure the theory for the linear
model does not generalize as elegantly as in the former structure.

Consider the further implications. We may have data that can be represented in five blocks in a
sequence of dependences and each block containing in general several variables on an equal footing: Xj,
base-line intrinsic variables, X a set of early risk factors, X¢ and X¢&, two explanatory variables of
immediate concern, X, a set of intermediate responses and Y, the ultimate response of interest. We ask
‘what is the effect of X¢ on response?’. The authors are right to criticize implicitly the statistical
literature for failing to address this kind of question, but I believe that workers in many applied fields
are clear that the right procedure, in the absence of X&, is to condition on Xp and Xz and to marginalize
over Xp; this would normally be expressed via the inclusion and exclusion of variables as explanatory in
some form of regression analysis. An important role of X; is, however, to explain the pathways via
which any effect of X¢ is produced, but that is a different issue which is not considered in the following.

But what of X&? Suppose to be specific that X and X¢ represent sodium and potassium levels in the
blood and Y is a medical outcome. We consider a hypothetical unit change in sodium level, X¢; what
happens to Y? There seem to be at least four possible answers to that question, depending on what
happens to X¢.

First we might fix X&, i.e. demote X& to being a component of Xp. This appears to be the only
approach that the authors consider. It is in the spirit of the representations that they favour. In some
contexts, e.g. if the variables represented sodium and potassium intake rather than levels in the blood, it
might be preferred. In others it would involve enforcing a lack of equilibrium in some underlying
process.

Secondly we might allow X¢ to vary in accordance with the relationship obtaining in the data under
analysis. This would involve promoting X¢ to be a component of the intermediate variable X;. This
might make sense if the regression of potassium on sodium level were observed in a longitudinal study
within individuals but almost certainly not if the regression were based only on a variation between
individuals because of the absence of longitudinal data.
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A third possibility is that a separate investigation is needed of the changes of X¢ consequent on
enforced changes of X¢. For least squares regression problems, this amounts to using the equation

ﬂYX(OXXC = ﬁYXC)(g + ﬁYXC"XC’VXCX(f’

where /}YX(_O X is the regression coefficient of ¥ on X¢ when X¢ varies in the new way specified and the
regression coeflicient Yy, y* refers, in general, to the new system different from the initial one. See Cox
(1984) and for an application Anderson and Cox (1950).

The fourth interpretation is to declare the initial question meaningless, i.e., at least until the interplay
between X¢ and X¢ is better understood, only the dependence of Y on the complex as a whole can be
studied.

Note that, if the final response Y has several components, it seems particularly artificial in the present
context to include some of these components as, in effect, explanatory variables.

Which of these interpretations is to be preferred is a subject-matter issue and cannot be settled by
seeing which fits best into some preordained mathematical structure.

I have much pleasure in seconding the vote of thanks.

The vote of thanks was passed by acclamation.

Svend Kreiner (University of Copenhagen)

There are many interesting and provocatory points in this paper on the incommensurability of directed
acyclic graphs (DAGs) and chain graph models (CGMs). It is certainly important to remember that
different types of model often are inconsistent and that we should not attempt to interpret features of
CGMs in terms of simple parsimonious DAGs. Section 5 thus discards CGMs where the use of CGMs
is discussed in terms of misuse and naivety, but they are revived in Section 6, where it is shown that
different types of data-generating feed-back mechanisms in infinite DAGs may result in models that at
least may be approximated by CGMs. The arguments in these two sections and the following discussion
of statistical analysis by CGMs and DAGs appear to be based on the basic assumption that a data-
generating mechanism must always be a DAG: that DAGs are more than a statistical model or at least
are closer to reality than other statistical models. The assumption is not stated explicity in this and other
sources on causal modelling, but if this is not what the authors mean then the arguments of the paper
reduce to the almost empty statement that different models may be inconsistent—an argument that does
not justify the judgmental terms used by the authors.

It is unfortunate that we must infer these viewpoints and it would be useful if the authors for once
would come clean on this point so that we can start discussing the pros and cons of this point of view. It
is also unfortunate that the belief in the fundamental nature of DAGs is not supported with examples
from actual research. Instead causal DAGs are usually discussed in loose epidemiological terms of
risk factors, diseases and symptoms where a causal interpretation of relationships is relatively easy.
A discussion of symmetric relationships must look beyond epidemiology to other research areas. For
a no longer recent but still valid discussion of symmetrical relationships in sociology see for
instance Rosenberg (1968). In addition to the same types of relationships discussed by Lauritzen and
Richardson, Rosenberg also discussed relationships where the existence of a data-generating
DAG—with or without feed-back—is not obvious, e.g. functional relationships of elements of units,
relationship between parts of a common system and fortuitous relationships rooted in accidental events
at macro levels.

Peter Green (University of Bristol)

The authors’ thesis that their data generation processes provide valid interpretations of chain graphs,
supporting intervention, is characteristically original and intriguing; central to this is the relationship
between intervention by replacement in a data generation process with ordinary conditioning in the
equilibrium distribution, and that is what I want to comment on.

This relationship is discussed in Sections 6.3 and 6.4, and directly extends that for undirected
graphs in Section 6.2; all that I want to say about the extension to chain graphs is that surely
convergence to equilibrium could occur concurrently rather than sequentially across the chain
components.

Section 6.2 provides helpful examples, rather than a full analysis of the connection between
intervention and conditioning; the present discussion is only slightly less incomplete. From these
examples, we have the impression that reversibility is the key. The first four processes listed—the
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systematic and random Gibbs samplers, the time reversible Markov dynamics and the Langevin
diffusions—are all reversible (in the case of the first, at least at the level of individual updates). It is easy
to contrive examples of non-reversible generating processes where condition (14) fails, i.e. where
intervention by replacement does not lead to ordinary conditioning. However, further study shows that
reversibility is not enough.

The vector diffusion (12), X(¢+ df) = X(¢) + CX(¢) dt + dZ(¢) with var{dZ(¢)} = Adt, is useful in
exploring things further. When A = I, this is reversible if and only if C is symmetric, precisely the
requirement for equation (14) to hold, as identified by proposition 5. But, for general A, the process is
reversible if and only if CA = ACT. As long as A is diagonal, the impact is straightforward—propo-
sition 5 can be easily modified, and reversibility continues to imply condition (14). However, if A is not
diagonal, this breaks down: your cannot simultaneously have condition (14) and obtain the correct
equilibrium without intervention. Diagonality of A is the same as saying that perturbations to the
individual variables are (conditionally) independent.

A similar complication arises if you take a broader view of the Gibbs sampler, allowing block
updates and directional sampling: again, condition (14) holds only when the perturbations are in-
dependent. When perturbations are independent, intervention by replacement is equally intervention by
conditioning, so the connection to ordinary conditioning in the equilibrium is perhaps unsurprising.

Curiously, the discrete time version of diffusion (12) behaves differently: suppose that X, ~
N(AX,,A). Reversibility (AA = AAT) and independent perturbations (A diagonal) are not enough:
for condition (14) you need A diagonal as well, when the system decouples completely. Perhaps the
advantage of continuous over discrete time processes is of more than ‘intuitive appeal’.

Bill Shipley (Université de Sherbrooke)

I present these comments as someone whose interest is in using graphical models to analyse and interpret
empirical data. Although statisticians for many years have studied chain graph models, such models are
only now beginning to be applied to empirical data. Because most empirical studies are based—im-
plicitly or explicitly—on causal hypotheses, it is important to describe clearly the causal interpretations
that are expressed in a chain graph. It is common in empirical research to propose multivariate causal
hypotheses in which some of the causal relationships between variables are unknown and so appear
symmetric. It is intuitively appealing to represent such undefined associations as undirected edges. As
Lauritzen and Richardson show in this paper, intuition can be a poor guide. Different causal inter-
pretations of the same chain graph (whether the undirected edge represents an unmeasured parent, a
selection process or a feed-back relationship) imply different patterns of conditional independence.
Since each such causal interpretation can be expressed as a directed acyclic graph or a directed cyclic
graph—perhaps involving latent nodes—one can ask ‘is there any causal process for which a chain
graph is preferable to a directed graph?’.

I suspect that the answer is ‘no’. However, one aspect of chain graph models that was not discussed
in this paper, but which might provide an affirmative answer, is in the testing of the model against
empirical data. A directed acyclic graph can be tested quite generally by obtaining the basis set of
d-separation relationships implied by the model followed by tests of the implied (conditional)
independences in the data. When some d-separation claims involve latents (which can be represented by
an undirected edge in a chain graph) then such tests cannot be performed directly since this would
require conditioning on an unmeasured variable. If the model is a directed cyclic graph then there might
be independences that are not captured by d-separation. The only available tests in such cases involve
the methodology of structural equation modelling and these tests require some assumptions that are
often difficult to meet in practice. Might it be possible to obtain a basis set of the conditional
independences implied by a chain graph relative to a specific causal interpretation of the undirected
edges that would permit the more general tests of conditional independence without requiring that we
condition on unmeasured variables?

J. T. Kent (University of Leeds)

The chain graph models of this paper are built out of two ingredients: undirected graphs and directed
acylic graphs. Both of these have important applications in image analysis where the vertices are usually
a set of sites or pixels arranged in a rectangular array. In a Markov random field, each site is linked to
nearby neighbours in an undirected graph. However, a Markov mesh model is a directed acyclic graph
in which each site has parents below and to the left. In both cases these are generally models of
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convenience without any scientific justification. Indeed a common modelling strategy is to increase the
size of neighbourhood until the fit is satisfactory. One question is whether it is possible to combine
Markov random fields and Markov mesh models to obtain more general chain graph models with
fruitful imaging applications.

Jim Q. Smith (University of Warwick, Coventry)
I congratulate the authors for their thought-provoking and well-written paper. I would like to make two
observations, both about causality or manipulation in general.

They demonstrate lucidly that models manipulated naturally using structural equation modelling do
not necessarily give the same rules as models naturally manipulated by augmenting the dynamics
generating their equilibrium distribution. Most of the Bayesian graphical models that I build encode
expert judgments. When eliciting such judgments it is often most natural to ask the expert to consider
what would happen if certain covariates were held fixed and others possibly randomized. Thus in
models of the spread of nuclear contamination engineers have a good appreciation of how the
components of their plant behaved in test conditions, physicists understand how the plume of released
contamination should move in a given wind field in stable atmospheric conditions and various species of
plant are exposed to radiation in controlled randomized trials to measure the nature and variability of
their absorption. Manipulated submodels are thus usually the primitive inputs to these composite
networked Bayesian models. The idle composite and other manipulated composites are obtained by
combining these components appropriately.

This is the reverse of that studied here. Could the limits of applicability of ‘off-the-shelf” families like
chain graphs be largely explained by the possibility that our knowledge and reasoning are most easily
performed and articulated in manipulated and not idle systems? Manipulated systems express sub-
stantive knowledge more often than the idle uncontrolled systems and we should make assertions about
what we expect in controlled environments and only then make the bold extrapolation to the idle
system. Taking this stance we become less worried that a family of graphical models does not fit many
generating processes. Rather our idle model is customized to the science of the application.

Second, I am uncomfortable with the apparent suggestion that graphical models should be first fitted
incorporating no other background knowledge (e.g. about the causal order of variables—see the end of
Section 8.3) and only then sorted by their contextual plausibility. This approach seems to lift conditional
independence hypotheses into an unjustified exulted position. You search through an enormous class of
models assuming that various combinations of conditional independence relationships hold, many of
which may be contextually unexplainable or implausible, ignoring all other background information
you have. You identify the graphical models that fit best and then accept the most likely if you can
match it with an explanation. Where do causal hypotheses which apparently require some specific
conceptual frame fit into this rather arbitrary and non-specific exploratory data analysis?

Have I misinterpreted the authors? If so, could they perhaps convince me with a contextual example
that leads to intellectually coherent reasoning?

The following contributions were received in writing after the meeting.

Jan T. A. Koster (Erasmus University, Rotterdam)

I would like to draw attention to a consequence of the proposed causal interpretation of chain graphs
which might worry some researchers wishing to extend their use of chain graphs from the ordinary
statistical domain to the more elusive causal domain, where intervention conditional densities are used
to model the consequences of concrete (e.g. experimental) interventions. As my point can already be
made clear for the special case of undirected graphs, I shall just consider this case. Suppose that G is an
undirected chordal (i.e. no cycles of length 4 or greater) graph, and let D be the (non-empty) class of
directed acyclic graphs (DAGs) that are Markov equivalent to G. Frydenberg (1990) has shown that
any such DAG has the same adjacencies as G, and no immoralities. Many researchers would accept G as
a safe and succinct representation of the class D whenever it is believed that some D € D is causal for
P—a view which the authors would probably call ‘epistemological’. Suppose that f'is the density of P,
where P is G Markov, and let D € D. Since P is D Markov as well, /' can be factored according to
formula (1); hence the conditional density of X} 4 given X4 can be expressed as

f(xV\A |x4) = H f(xv|xp‘du(v)) H f(xv|xpag(v))f(xz4)7l~
velV\4 ved
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Assuming that D is causal for P, the intervention conditional density induced by D is denoted by
Sxnallx4) and is given by formula (5) of the paper. So flx)\4||x4) = j(xV\A\xA) holds, if and only if
S(x4) = Iy 4 fxo|Xpa, ), if and only if, for all v € A4,pap(v) € 4 and Py 1s D4 Markov, if and only
if pap(A4) = O (since this entails that P, is Dy Markov) Since the intervention conditional density for
the undirected graph G satisfies f(xy\4|[x4) = flx)\4x4) by definition, under the epistemological
interpretation of G this will only be correct as a model for a concrete intervention X4 < x4, if for the
true causal DAG D € D it holds that papy(4) = J. If neg(A4) # J, it follows from corollary 4.1 of
Andersson et al. (1997) that, for some D € D, pap(A4) # . Also, unless D = {G} (i.e. G has no edges),
for some intervention set 4 C V it will be the case that pa,(4) # &, where D € D is the true causal
DAG. Of course, the issue does not arise if G is non-chordal, as in that case D = (J, i.e. there are no
DAGs which are Markov equivalent to G.

David Madigan (Rutgers University), Steen A. Andersson (/ndiana University, Bloomington) and Michael
D. Perlman (University of Washington, Seattle)

We congratulate the authors for this insightful and informative paper. Particularly instructive is their
demonstration of possible misinterpretations of chain graph (CG) Markov models, which here and
elsewhere we refer to as LWF (Lauritzen, Wermuth and Frydenberg) CG models.

In Section 8.4 the authors note that an alternative Markov property (AMP) has been developed for
CGs by Andersson et al. (1996, 2001) (in fact a special case of the Cox and Wermuth (1993, 1996) family
of joint response CG models). The authors point out that, although the AMP associated with graph
CGs; in Fig. 1(b) coincides with that obtained by marginalization over the hidden variable / in graph
DAGq in Fig. 2(a), this does not generally hold for CGs under the AMP (or LWF) interpretation.
None-the-less, a direct, in fact linear, representation is possible for Gaussian CG models under the AMP
interpretation; this representation can be interpreted as a direct data-generating process provided that
correlated errors are permitted.

For graph CGs this representation takes the form (cf. Anderson et al. (2001), section 1)

Xy = &g,

Xp = &,
X = ,BcaXa + &,
Xa = BaupXp + &,

where f,, and 8, are non-random scalars and where ¢,, ¢, and (e, ¢;) are mutually independent random
errors with zero means, ¢, and ¢, have univariate normal distributions with arbitrary variances and
(ec, &4) has a bivariate normal distribution with unspecified covariance matrix. When corr(e., &) #
0, (X,, Xp, X., Xy) satisfies the AMP conditions for CGj but not the LWF conditions.

Such a linear representation remains valid for a general CG G: the AMP for G is equivalent to the set
of conditional independences satisfied by a block-recursive Gaussian linear system naturally associated
with G. Each variate is expressed as a linear function of its parents in the CG, together with a Gaussian
error term. The errors are independent across blocks, whereas within each block the errors are
(possibly) correlated according to the undirected subgraph in the block, i.e. according to a Gaussian
covariance selection model (Dempster (1972) and Lauritzen (1996), section 5.2)—see Andersson et al.
(2001), remark 5.1, for details. Therefore a general AMP CG model with Gaussian errors can be
interpreted as arising from a (linear) data-generating process exactly to the extent that Gaussian
covariance selection models admit such an interpretation (or, if covariance selection models simply are
viewed as primitives). Thus, if each undirected block subgraph is decomposable and hence Markov
equivalent to some acyclic directed graph (Andersson et al., 1997), the within-block errors can be
expressed as linear combinations of uncorrelated errors; hence the entire block-recursive Gaussian
linear system can be expressed in terms of uncorrelated errors. For example, in expressions (24)
(&c5 €4) ~ (¢, 0. + 04) (or vice versa), where corr(d,, 04) = 0.

24

Michael D. Perlman (University of Washington, Seattle), Steen A. Andersson (Indiana University,
Bloo-mington) and David Madigan (Rutgers University)

It is of interest to note the difference between the Lauritzen, Wermuth and Frydenberg (LWF) Markov
property and alternative Markov property (AMP) for the chain graph CG* obtained from CGj; by
adding an undirected edge between nodes a and b. Under the LWF interpretation CG* entails the two
conditional independences alLd|{b, ¢} and bl c|{a, d}, which remain unchanged if (g, b) and (c, d) are
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interchanged. Thus CG* is Markov equivalent to the fully undirected graph obtained by converting the
two arrows a — ¢ and b — d into undirected edges, as well as to the CG obtained by reversing the two
arrows, thereby losing the intuitive notion of causality conveyed by these two arrows in CG*. By
contrast, the AMP for CG* entails the two conditional independences a_lLd|b and bl c|a, which do not
allow the interchange of (a, b) and (c, d). Of course, no graphical Markov property can endow a simple
bivariate graph a — b with a causal interpretation.

In Section 5.3 it is shown that the most parsimonious LWF CG model that is compatible with the
blocking shown in Fig. 4(b) and containing the Markov model determined by graph DAG; in Fig. 4(a)
is the saturated model given by graph CG;. However, a more parsimonious model that is compatible
with the blocking and containing the DAG; model is that given by the CG ¢ — x—y under the AMP
interpretation, since this AMP CG is in fact Markov equivalent to DAG;. Of course, given a general
DAG model and a compatible blocking, there need not be a Markov equivalent AMP or LWF CG
model with the specified blocking. An example is the DAG obtained from CG3 by converting ¢—d into
¢ — d, together with the blocking of CGs;.

The rationale for substantive ordered blocking of variates is carefully examined by the authors in
Section 5.3. A second rationale for blocking is the occurrence of symmetries among variates; these
symmetries induce blocking in a natural way. For example, Andersson and Madsen (1998) and Madsen
(2000) treated DAG models whose vertices are themselves multivariate blocks, with symmetries present
within these blocks.

Christian P. Robert and Jean-Michel Marin (Université Paris Dauphine)

As naive newcomers to the field, we fail to perceive the incentive of using partially directed graphs for
statistical or inferential purposes. In particular, the absence of real examples in the paper is a hindrance
to understanding what is known, unknown or sought: are the joint, marginal or conditional distri-
butions known? Are the node realizations observed? For instance, taking graph (b) of Fig. 1, simple
conditioning leads us to the directed representation

f(a) x f(b) x f(cla,d) x f(d|a, D).

Obviously, if fld|a, b) is unknown, we understand (and appreciate) the Gibbs data-generating process
using only the conditionals f{c|a, d) and f{(d|c, b).

If the conditional distributions of the nodes are known, undirected edges do not seem relevant for
the statistical processing (e.g. estimation) of the parameters underlying the distributions of the various
bits of the graph. For instance, in graph (a) of Fig. 2, if it is known that there is a latent variable 4, this
information can be incorporated within the model for later processing, as in the EM and Gibbs
algorithm. Similarly, if there is a known feed-back structure as in graph (c) of Fig. 2, or the corres-
ponding example of Whittaker (1990), this piece of information should be incorporated during the
statistical processing.

However, if the purpose of the study is to determine causal relations (e.g. model choice), is there
enough information within the data per se to reach a conclusion? Several causal structures can lead to
the same likelihood, and thus should lead to the same inference or should not be discriminated. As
mentioned in the paper, the representation

X=TX+Ac¢
is equivalent, likelihoodwise, to the representation
X=(-D)"A¢

for the estimation of the parameters I' and A.

At a more technical level, we think that there is a potential danger in using feed-back models in that
conditional distributions are not always compatible with a global joint distribution, as discussed in
Hobert and Casella (1996).

Paul R. Rosenbaum (University of Pennsylvania, Philadelphia)
Graphs are fun, conditional independence is fundamental and Lauritzen and Richardson deserve
congratulations for new insights into their interconnections.

Do graphical models clarify causality? Is it useful to imagine causal intervention as changing a line of
code in a computer program? In clarifying cause and effect, I am pessimistic about multivariate models,
but optimistic about better data. Better data mean better research design and implementation:
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(a) articulation of the empirical consequences of scientific theories;

(b) controlled experimentation or the identification of natural laboratories where disturbances are
controlled and treatments inflicted haphazardly;

(c) precise collection of detail, including temporal order

(Fisher, 1935; Meyer, 1995; Piantadosi, 1997; Rosenbaum, 1999, 2002; Angrist and Krueger, 2000;
Cox and Reed, 2000; Rosenzweig and Wolpin, 2000; Shadish et al., 2002).

The canonical example of simultaneous equations is from price theory, with supply and demand
determining and being determined by price. The atoms of price theory are single purchases, now available
from check-out scanners with longitudinal data for individual customers. With these better data, price
and demand changes are temporally ordered, not simultaneous, and real consumers in real stores behave
differently from the prediction of supply-and-demand equations (Fader and Hardie, 1996).

Two fields that used structural equations are macroeconomics and statistical genetics, but both have
acquired vastly better data, to which they have applied new, intriguing, simple, convincing research
strategies—convincing because of simplicity.

Parents deliver to offspring a distribution of genotypes that is exchangeable between their biological
siblings, i.e. exchangeable within sibships. Exploiting this fact, together with direct measurement of
genotype markers and disease outcomes, Spielman and Ewens (1998) developed a permutation test—a
variant of Mantel’s (1963) test (Laird et al., 1998)—to identify markers closely linked to genes that
contribute to disease susceptibility. See also Risch and Merikangas (1996) and Horvath and Laird
(1998). In contrast, path analyses typically use neither genotypes nor sibships, confounding genes and
environment.

Studying the microfoundations of macroeconomics, Gross and Souleles (2002) used detailed
longitudinal data about 230000 credit card accounts, including credit quality scores, to examine
Friedman’s (1968) permanent income hypothesis which asserts that consumers spend in accord with
their expected long-term income. Credit card companies expand individual credit limits by using credit
scores and idiosyncratic timing rules. Controlling for credit scores and exploiting idiosyncrasies in
timing rules, Gross and Souleles (2002) find that increases in credit limits meaningfully predict
immediate increases in consumption, counter to the permanent income hypothesis.

Causes operate through mechanisms—genes, purchases, credit expansions—which take time:
treatment precedes effect. With better data, you would see more of it.

Alberto Roverato (University of Modena and Reggio Emilia, Modena) and Guido Consonni (University
of Pavia)

This paper raises several interesting and thought-provoking issues. We would like in particular to dwell
on the use of background information on the ordering of the variables involved, especially for Bayesian
inference. We shall consider the case wherein the data-generating process is a directed acyclic graph
(DAG) model and no latent variables are present.

Assume first that the ordering of the variables is known. To perform Bayesian model determination,
prior elicitation on the parameters of each model is required. Ordering variables can vastly simplify this
process through the imposition of properties such as global parameter independence and prior
modularity. We remark that these properties may also be applied with respect to all orderings of the
variables, although this severely restricts the choice of prior families (essentially Wishart and Dirichlet
respectively for Gaussian and multinomial sampling schemes).

We now turn to the more realistic situation wherein the ordering of variables is not assumed to
be known. It is well established that model determination procedures confined to undirected
graphical models (i.e. chain graph models with only one chain component) are not suitable because
there are DAGs that are not Markov equivalent to any undirected graph: indeed the appropriate
structure to be considered here is the essential graph. Now suppose that we are willing to assume
only a partial ordering of the variables, so that only blocks of variables can be ordered. If, as
discussed by the authors, this background information translates into a chain graph with more than
one component, then conceptual difficulties arise, as clearly illustrated in Section 5.3. However, this
is only to be expected, since a chain graph is merely replicating to several blocks the (inappropriate)
undirected case discussed above. We conjecture that a more suitable approach is to require that
edges between vertices belonging to distinct blocks be directed, whereas within blocks both directed
and undirected edges should be allowed. In this way both graph DAG,; and graph CG,; of Fig. 4
would be simultaneously taken into consideration.
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A chain graph is sometimes referred to as a ‘DAG of chain components’. Our current research is
exploiting the idea of using ‘DAGs of essential graphs’ to perform Bayesian model determination when
only partial prior information on the ordering of variables is available. Our point here is that
background information on the ordering of variables may be a powerful tool to structure prior beliefs,
while in no way unduly restricting the model space.

Milan Studeny (Academy of Sciences of the Czech Republic, Prague)

My comment concerns the concept of data-generating processes (DGPs). 1 have difficulty in under-
standing what is meant by this phrase in general. Nobody has given me a mathematical definition on
the basis of which I can decide what is supposed to be a DGP for a particular (graphical) model of
conditional independence structure and what is not. In my view, a DGP is simply a mental construct by
means of which a statistician explains why a particular model occurs in practice. Thus, it is made up to
justify a particular class of models and the criterion of what is a DGP is highly subjective! Cox and
Wermuth (1996) wrote about implications of DGPs on an intuitive level whereas Lauritzen and
Richardson give more detailed examples of DGPs. I appreciate it very much.

Whereas the concept of a DGP for directed acyclic graphs is clear, the case of undirected graphs
(UGs) still depends on intuition. Being a mathematician accustomed to a detailed specification of steps I
have difficulty in understanding the instruction ‘repeat until equilibrium’ in the ‘computer program’ in
Section 6.1. In my view, this phrase represents an even more complex decision process and to explain it
fairly many more details are needed. This is my impression resulting from discussion with Thomas
Richardson who tried to give me further details.

Thus, I ask myself, if the aim of the concept of a DGP is to justify the use of a model why not give a
simpler explanation of UG models in terms of factorization of a distribution after the cliques? Perhaps
this is not an explanation that statisticians are accustomed to, but it is very clear from the point of view
of probabilistic expert systems and computer scientists may accept it without difficulty. Indeed, cliques
of a UG may be interpreted as maximal sets of interdependent variables and this interpretation could be
used by a knowledge engineer constructing a UG model and trying to ‘extract’ structural information
from an expert.

Following this line, classical chain graph models could be viewed as natural generalizations of UG
models: when pieces of structural information from different experts are combined. As illustrated by
example 3.1 in Studeny (1998) a basic factorization formula from Section 3.1 is obtained when we have
a group of experts, who are ‘chronologically’ ordered to avoid possible discrepancies between their
testimonies, and each of them is asked to give structural information about his or her area of
competence and indicate preceding relevant factors. This comment is too short to explain the details but
a sketch is given in Studeny (1998).

The authors replied later, in writing, as follows.

First we would like to thank all the discussants for their interesting comments and suggestions which
have given us the opportunity to consider the material in our paper from new angles. Below we give
brief replies to the issues that are raised although many would deserve longer and elaborate answers.

Several of the discussants seem to imply that our paper is meant to advocate for or against the
application of chain graphs and a specific interpretation of these. However, our primary intent in
writing this paper was simply to clarify which explanations are and are not compatible with certain
chain graph models.

Although we do see directed acyclic graphs (DAGs) as underlying most causal explanations, when
described in sufficient detail, such a description may be useless for practical purposes, particularly if
there are deterministic or functional relationships between variables. The diffusion process in Section
6.1 may only be viewed as a DAG at an infinitesimal timescale. Dr Kreiner and Dr Studeny appear to
argue that chain graphs are themselves primitive explanations and do not require further elaboration.
We do not find this viewpoint convincing: in our view more complex models need more ‘explanations’,
‘mechanisms’, ‘theories’ or ‘empirical validations’ to justify them. The custom of directing edges in
accordance with a prior ordering necessitates such a justification: without an interpretation there is no
reason a priori why these edges should not be directed in the opposite direction!

Consideration of such explanations is also important when considering which class of graphical
models to apply in a given situation. Although we agree with Professor Dawid that the use of policy
variables F\ provides a simple means of computing the effects of interventions, it is still important to
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consider underlying generating mechanisms. For example, as emphasized by Dr Koster, the theory of
intervention for chain graphs as described in Section 6 only makes sense when undirected edges are
interpreted in terms of feed-back. We agree with Professor Cox when he argues that there are many
different types of intervention that may be considered. However, we think that the intervention formula
for chain graphs (equation (18)) accommodates his second suggestion, so it is not correct that the first
interpretation is the only we consider.

We are grateful to Professor Green for pointing out that our proposition 5 fails when A is not
diagonal. Indeed, proposition 5 can be strengthened to say that, if variables are scaled so that A has all
diagonal elements equal to 1, then equation (14) implies A = I and C = —K/2 when ‘intervention by
replacement’ is made with Zp having the conditional covariance given Z,4 = 0. The proof is essentially
identical with that given in the paper.

We agree with Professor Cox when he argues that other classes of graph are required in the context of
DAG models with hidden variables; see point (c) in Section 5. However, as the examples in Section 5.3
demonstrate, the process of blocking appears to serve no purpose if unmeasured confounders may be
present. Consequently, we conclude that blocking only makes sense in contexts where it may be argued
that—to a reasonable scientific approximation and with caution—it is either known that there are no
unmeasured confounders or it is known precisely which variables are children of a common confounder, so
that such variables may be blocked together, possibly thereby ignoring information on temporal ordering.

The proposal of Professor Roverato and Professor Consonni to construct a DAG of essential graphs
faces the problem that the directed edges between blocks will constrain which essential graphs may occur
within blocks. For example, in Fig. 4(c), there may be an undirected edge between x and y if and only if
a is either a parent of both x and y or neither.

The generating process for chain graphs under the alternative Markov property (AMP), described
by Professor Andersson, Professor Madigan and Professor Perlman, helps to clarify the distinction
between the two chain graph Markov properties. The generating process for chain graphs under the
original Markov property involves feed-back among the observed variables themselves (Section 6).
The Gaussian generating process, described by Andersson and his colleagues, may be regarded as
presupposing feed-back relationships among error terms. This AMP interpretation crucially requires
each observed variable to be a deterministic function of its parents in the chain graph together with its
error variable. For instance, marginalization over {x, y,z} in chain graph CGy in Fig. 10(a) does not
induce an independence model on {a, b, ¢, d} corresponding to chain graph CGs in Fig. 10(b) under the
alternative property. (Under the AMP b.ll.d|{a,c} in CGs whereas this does not follow in CG4 from
either Markov property.)

The first point of Professor Perlman and his colleagues appears to mix together several concepts:
specifically, there appears to be an implicit claim that if a graph is asymmetric then the joint distribution
should reflect this asymmetry. It is difficult to see a priori why this should be so: for example, Markov
equivalent DAGs, if not identical, will always contain edges pointing in different directions, yet
represent the same set of distributions. The intervention formulae (equations (5) and (18)) make clear
that the asymmetry in the directed edges in the graph is reflected in the causal intervention distributions,
rather than in the structure of a passively observed joint distribution obeying the Markov property for
the graph. When Professor Perlman and his colleagues state that no graphical Markov property can
endow a bivariate graph with a ‘causal interpretation’, this is true if it is interpreted to mean that a
Markov property cannot associate an asymmetric joint distribution with such a graph. However, a
causal Markov property, as described by an intervention formula, does just this: it associates
asymmetric intervention distributions with a directed edge!

To answer Professor Kent’s question, it would certainly be possible to construct a true hybrid
of Markov mesh and undirected Markov models, by constructing a sequence of chain components
corresponding to horizontal lines, with vertical arrows between lines. We cannot speculate on whether
3 a
1 CGs p—c—ud
y

(a) (b)

Fig. 10. (a) Chain graph CG4 and (b) a chain graph CGs that is not Markov equivalent (under either chain graph
Markov property) to the marginal distribution of CG4 over {a,b,c,d}
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this is a fruitful approach to follow. Chain graphs also form obvious candidates for space—time
processes, where chain components are undirected lattices representing space, whereas there are arrows
between chain components representing dynamics; see Besag (2002) for recent related work.

To address the concerns raised by Professor Smith, a distinction needs to be made between modelling
an idle system about which you have detailed causal knowledge and modelling an idle system when you
have information only on time order. The former appears to correspond to the situation that he has in
mind, whereas the latter context describes many applications of chain graphs, which are somewhat
exploratory in nature. These contexts are quite different: ‘a precedes b> does not imply that ‘a causes b’!
The remark at the end of Section 8.3 that Professor Smith finds ‘uncomfortable’ is merely a restatement
of the fact, demonstrated in Section 5.3, that knowledge of time order alone may place no restrictions
whatsoever on the class of possible independence models in the presence of confounding or selection
mechanisms. Also note that to construct a model for a large system in an idle situation from
experimental submodels as described by Professor Smith it is important that there are no unmeasured or
unaccounted for confounders in the larger system. Finally, although it is true that model searches are
often performed in practice to find the best fitting graphical model, nowhere in the paper do we
advocate ‘accepting’ the output of such a search.

Dr Marin and Professor Robert seem to address issues of computation and inference and query what
is known and unknown. Our study does not address these issues but is only concerned with the potential
validity of various types of causal interpretations of chain graph models. We are grateful for the
reference to Hobert and Casella (1996) which is clearly concerned with issues related to those discussed
in Appendix A.

We thank Professor Shipley for his comments on the use of graphical models in empirical data
analysis. Regarding his question whether there are causal processes for which chain graphs are preferable
to directed graphs, we believe that the type of feed-back system shown in Fig. 6 represents such a
process. Any one of the local Markov properties for chain graphs described in Lauritzen (1996) will form
a ‘basis’ of independence statements implying the global Markov property (assuming positivity).

We are happy to agree with many of the points made by Professor Rosenbaum: of course better data
are better; longitudinal data are also better than aggregate ‘equilibrium data’. However, we make the
following points.

(a) Simply because a simple model or research strategy may appear more convincing than a
complex one does not make it any more or less true. It is worth bearing in mind Savage’s
comment that a model should be ‘as big as an elephant’; see Lindley (1983). Even with a
gigantic ‘market basket’ data set, presumably the usual issues of selection and unobserved
variables, e.g. prices in other stores and price reductions coinciding with advertising
campaigns, and must still be addressed.

(b) Drawing causal conclusions from observational data without (implicitly) positing a multivariate
model is clearly not possible; for example, multiple regression requires an intricate battery of
substantive assumptions in order for a given coefficient to be interpretable causally.

(c) Although it may be simplistic to model a causal intervention in terms of modifying a computer
program, it does have the advantage of being unambiguous and precise. This has not always
been true of discussions of causality couched in the more traditional terms of ‘simultaneity’,
‘exogeneity’ and ‘endogeneity’.

Finally, economists to whom we have spoken have said that there were many situations in which it is
not possible to find ‘microdata’, and thus it is not surprising that there continues to be a large amount of
empirical research which uses macroeconometric models.
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